首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple forms of monophenolase in wheat half-seeds were separated by molecular sieving on Sephadex G-200. A single molecular form of monophenolase was observed in control, while two multiple forms were present in GA3-treated wheat half-seeds. A high MW (200 000 or above) multiple form (activity peak I) which eluted soon after the void volume was exclusively present in GA3-treated half-seeds. The second activity peak (peak II) was a low MW (45 000) multiple form and its elution profile coincided in control and GA3-treated wheat half-seeds. Both the multiple forms of monophenolase in GA3-treated wheat half-seeds showed a pH optimum at 9.0, while the optimum enzyme activity of the control molecular form (peak II) was at pH 7.0. This indicated that the treatment of wheat half-seeds with GA3 brought about a structural modification in monophenolase. The in vitro addition of trypsin enhanced the control of the molecular form of monophenolase but this treatment failed to alter the activity of multiple forms in GA3-treated half-seeds. This differential response of monophenolase towards trypsin could be ascribed to a conformational change of the enzyme in hormone-treated half-seeds. Brief exposure of the enzyme preparation to urea (6 M) brought about an irreversible activation of monophenolase both in control and GA3-treated wheat half-seeds.  相似文献   

2.
Summary Exogenous gibberellic acid, A3 (GA3) inhibits phytochrome mediated betacyanin synthesis in seedlings of Amaranthus caudatus. The growth retardants, -chloroethyl-trimethylammonium chloride (CCC), 'isopropyl-4-(triethylammonium chloride)-5-methylphenyl piperidine carboxylate (AMO 1618) and tributyl-2,4,-dichlorobenzylphosphonium chloride (phosphon D) enhance pigment synthesis. Retardant stimulation of pigment synthesis is overcome by GA3 application. Besides lowering endogenous GA levels the retardants inhibit protein synthesis by as much as 25%. Retardant inhibition of protein synthesis is not overcome by GA3. The results suggest that amaranthin synthesis in Amaranthus caudatus can be directly controlled by endogenous GA. GA3 has no effect on kinin induced dark pigment synthesis. Kinins, however, do not overcome GA3 inhibition of pigment synthesis in the light.Abbreviations AMO 1618 2, 'isopropyl-4-(triethylammonium chloride)-5-methylphenyl piperidine carboxylate - CCC -chloroethyltrimethylammonium chloride - GA3 Gibberellic acid, A3 - Phosphon D tributyl-2,4,-dichlorobenzylphosphoninm chloride  相似文献   

3.
Summary Olfactory receptor neurons enzymatically dissociated from channel catfish olfactory epithelium were depolarized transiently following dialysis of IP3 or cAMP (added to the patch pipette) into the cytoplasm. Voltage and current responses to IP3 were blocked by ruthenium red, a blocker of an IP3-gated Ca2+-release channel in sarcoplasmic reticulum. In contrast, the responses to cAMP were not blocked by extracellularly applied ruthenium red, nor by l-cis-diltiazem or amiloride and two of its derivatives. The current elicited by cytoplasmic IP3 in neurons under voltage clamp displayed a voltage dependence different from that of the cAMP response which showed marked outward rectification. A sustained depolarization was caused by increased cytoplasmic IP3 or cAMP when the buffering capacity for Ca2+ of the pipette solution was increased, when extracellular Ca2+ was removed or after addition of 20–200 nm charibdotoxin to the bathing solution, indicating that the repolarization was caused by an increase in [Ca i ] that opened Ca2+-activated K+ channels. The results suggest that different conductances modulated by either IP3 or cAMP are involved in mediating olfactory transduction in catfish olfactory receptor neurons and that Ca2+-activated K+ channels contribute to the termination of the IP3 and cAMP responses.Abbreviations ATP adenosine 5-triphosphate - BAPTA (bis-(o-aminophenoxy)-ethane-N-N-N-N)-tetraacetic acid - cAMP adenosine cyclic 3,5-monophosphate - cGMP guanosine cyclic 3,5-monophosphate - CTX charybdotoxin - DCB 3,4-dichlorobenzamil - EDTA ethylenediaminetetraacetic acid - EGTA ethylenglycol-bis-(b-aminoethyl)-N-N-N-N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - IP3 inositol-1,4,5-triphosphate - NMDG N-methyl-d-glucamine We would like to thank the Tanabe Seiyaku Co., Ltd., for their gift of l-cis-diltiazem. This work was supported by National Institutes of Health grants DC00566 and BRSG S07RR05825.  相似文献   

4.
APS-kinase (ATP: adenylylsulphate 3-phosphotransferase, EC 2.7.1.25) has been purified from the alga Chlamydomonas reinhardii, strain CW 15 by means of chromatofocussing and affinity chromatography. The isolated protein showed an apparent molecular mass of 44,000 upon sodium dodecylsulphate polyacrylamide gel electrophoresis. The transfer of phosphate groups from ATP onto APS required a pH of 6.8, the presence of Mg2+ ions and a reducing thiol. Its catalytical activity was destroyed by sulphhydryl group inhibitors (phenyl-mercuri compounds, dithiopyridine) and alkylating reagents.The purified enzyme attained a V max of 360 pkat under optimal reaction conditions declining to v limit of 260 pkat in the presence of excess substrate APS. This sensitivity towards changes in substrate concentrations was parallelled by a high affinity and specificity: apparent K m APS: 2 · 10-6 mol · l-1, and K m ATP: 7 · 10-6 mol · l-1. The enzyme was found specific for ATP, d-ATP and CTP, while UTP, ITP and GTP showed marginal activity. The Hill coefficients suggested 4 binding sites for APS and 1 for ATP. Excessive APS resulted in a negative slope indicating 3 inhibiting sites of the substrate.Abbreviations APS Adenosine 5-phosphosulphate - dATP 2-deoxyadenosine 5-triphosphate - p-CMB p-chloromercuribenzoate - DTE dithioerythritol - DTT dithiothreitol - -MSH -mercaptoethanol - PAPS 3-phosphoadenosine 5-phosphosulphate - PAP 3-phosphoadenosine 5-phosphate - SDS sodium dodecyl sulphate This work is part of a dissertation submitted by H. G. J., Bochum 1982  相似文献   

5.
Summary Inhibition of growth of PY815 mouse mastocytoma cells in vitro by N6, O2-dibutyryladenosine 3,5 cyclic monophosphate (DB cyclic AMP) was accompanied by increases in intracellular cyclic AMP and histamine and minor changes in cytosolic cyclic AMP-dependent histone kinase activity. However, DEAE-cellulose chromatography revealed substantial changes in the relative proportions of the principal cyclic AMP-dependent protein kinases and in free cyclic AMP-binding protein after DB cyclic AMP treatment. The activity of cytosolic cyclic AMP-dependent protein kinase type I (PKI) decreased relative to cyclic AMP-dependent protein kinase type II (PKII) and there was an increase in a cytosol cyclic AMP-binding protein with little associated protein kinase activity. The relative changes in activity of PKI, PKII and cyclic AMP binding protein after DB cyclic AMP treatment may reflect events important in the regulation of growth and differentiation of mast cells.Abbreviations DB cyclic AMP N6,O2-dibutyryladenosine-3, 5-cyclic monophosphate - cyclic AMP adenosine 3,5-cyclic monophosphate - PKI type I cyclic AMP-dependent protein kinase - PKII type II cyclic AMP-dependent protein kinase  相似文献   

6.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

7.
Summary WhenActinoplanes strain ATCC 33076, the producer of A-16686 A1, A2 and A3 complex, is fermented in a suitable medium three additional factors, designated A1, A2 and A3 are produced. These were isolated and characterized, and were shown to differ from the parent components of the original complex by lacking one mannose unit. Bioconversion of A factors into A factors was achieved by incubation with the mycelium ofActinoplanes ATCC 33076. Factor A2 has better antibacterial activity than A2 against some bacteria.  相似文献   

8.
The enzymatic conversion of formaldehyde to CH3S-CoM in crude extracts of Methanobacterium thermoautotrophicum was used as a means to investigate the methyl-tetrahydromethanopterin: HS-CoM methyltransferase reaction. All components necessary for formaldehyde conversion were shown to be present in a soluble protein fraction. This soluble cell fraction still contained a major amount of corrinoids. Apart from tetrahydromethanopterin no other soluble cofactors were required for formaldehyde conversion. The dependence of the system on catalytic amounts of ATP was shown to be specific. Several nucleoside triphosphates or ADP were unable to substitute for ATP. Remarkably, various strong reducing systems, especially titanium(III)citrate could replace ATP to a large extent. The ATP-dependent formaldehyde conversion to CH3S-CoM was inhibited in the presence of nitrous oxide, detergents or 2,3-dialdehyde-ATP. The results support a role for a corrinoid protein in the methyl-tetrahydromethanopterin: HS-CoM methyltransferase reaction at which ATP is involved in the activation of this protein, probably in the conversion of inactive B12a or B12r to active B12s.Abbreviations HS-CoM Coenzyme M, 2-mercaptoethanesulfonate - CH3S-CoM methylcoenzyme M, 2-(methylthio)ethanesulfonate - H4MPT 5,6,7,8-tetrahydromethanopterin - BES 2-bromoethanesulfonate - BCE boiled cell-free extract - DTT dithiothreitol - TCS 3,3,4,5-tetrachlorosalicylanilide - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - AMP-PNP 5-adenylyl imidophosphate  相似文献   

9.
Roots of spinach (Spinacia oleracea L.) seedlings contained only a very low activity of adenosine 5-phosphosulfate sulfotransferase compared to the cotyledons. Adenosine 5-phosphosulfate sulfotransferase activity increased about tenfold in cotyledons during greening. Preparation of organelle fractions from spinach leaves by a combination of differential and isopycnic density gradient centrifugation showed that adenosine 5-phosphosulfate sulfotransferase banded with NADP-glyceraldehyde-3-phosphate dehydrogenase, a marker enzyme for intact chloroplasts. In the fractions of peroxisomes, mitochondria and broken chloroplasts virtually no adenosine 5-phosphosulfate sulfotransferase activity was measured. Comparison with the chloroplast enzyme NADP-glyceraldehyde-3-phosphate dehydrogenase indicates that in spinach, adenosine 5-phosphosulfate sulfotransferase is localized almost exclusively in the chloroplasts.Abbreviations APS Adenosine 5-phosphosulfate - APSSTase Adenosine 5-phosphosulfate sulfotransferase - BSA Bovine serum albumin - BRIJ58 Polyethylene glycolmonostearylether - DTE Dithioerythritol - DTT Dithiothreitol - EDTA Ethylenediaminetetraacetic acid - ME 2-Mercaptoethanol - NADP-GPD NADP-linked glyceraldehyde-3-phosphate dehydrogenase - PAPS Adenosine 3-phosphate 5-phosphate 5-phosphosulfate - POPOP 1,4 Di [2-(5-phenyloxazolyl)]-benzene - PPO 2,5-Diphenyloxazol The results presented in this paper are taken from the Ph. D. thesis of H.F.  相似文献   

10.
The origin of Q-independent derivatives of phage lambda   总被引:13,自引:0,他引:13  
Summary qsr (Q-independent) phages are characterised by the replacement of the region of the genome that contains Q, S, R, and the late gene promoter, PR, with host-derived DNA that codes for functions analogous to those deleted. Restriction endonuclease analysis and DNA/DNA hybridisation methods have been used to show that p4 and qin A 3, two such Q-independent phages, are the product of recombination between and a defective lambdoid prophage (the qsr prophage) located at an as yet unidentified site in the E. coli K 12 chromosome. The qsr prophage is distinct from the defective lambdoid prophage Rac (Kaiser and Murray 1979). In the E. coli K 12 strain AB1157 from which qsr phages cannot be generated, the qsr prophage has suffered an internal deletion. That the qsr prophage appears not to carry a full complement of essential late genes suggests one explanation for its apparently defective nature.  相似文献   

11.
Summary The actions of cyclic AMP are subject to several levels of post-receptor modulation in cardiac tissue. Isoproterenol and prostaglandin E1 both stimulate cAMP accumulation, but only isoproterenol causes activation of particulate cAMP-dependent protein kinase, leading to activation of phosphorylase kinase and glycogen phosphorylase, and inhibition of glycogen synthase. Through the use of isolated, adult ventricular myocytes, we have determined that the hormone-specific activation of glycogen phosphorylase is due to subcellular compartmentation of cAMP. There is some evidence that cyclic nucleotide phosphodiesterases, whose activity is stimulated by alpha1-adrenergic agonists in isolated myocytes, may have a role in compartmentation. Phosphoinositide hydrolysis is stimulated by alpha, and muscarinic agonists, presumably leading to activation of protein kinase C, which in turn has multiple effects on hormone-sensitive adenylate cyclase.Abbreviations cAMP Adenosine-3,5-Cyclic Monophosphate - cGMP Guanosine-3,5-Cyclic Monophosphate - Gi, GS Guanine nucleotide-binding proteins linked to inhibition and stimulation, respectively, of adenylate cyclase - GTP Guanosine-5-triphosphate - PDE Cyclic Nucleotide Phosphodiesterase - PGE1 Prostaglandin E1  相似文献   

12.
Summary The timing mechanism underlying ultradian (2–3 h) activity patterns in the common vole, Microtus arvalis, was studied using behavioural deprivation experiments. These were aimed at distinguishing between a homeostatic control mechanism, in which the rhythmic behaviour itself is part of the causal loop, and a clock mechanism, independent of the behaviour.In 175 experiments, deprivation of food during 3 ultradian cycles in (subjective) daytime did not result in significant changes in the ultradian periodicity of attempts to obtain the food, compared with ad lib. access to food and water. A minor, but significant increase in ultradian activity time () occurred in the course of the deprivation, but this was compensated by a shorter ultradian rest (). These results were obtained both in intact animals (n = 24), which showed ultradian and circadian rhythmicity in behaviour, and in animals (n = 21) with electrolytic lesions aimed at the suprachiasmatic nuclei (SCN), which lacked the circadian modulation of behaviour. Simultaneous deprivation of water and food in 8 voles without circadian rhythmicity during 40 experiments also did not lead to any change in the ultradian periodicity of feeding attempts.Rest deprivation was studied in 5 SCN lesioned voles, by forcing running wheel activity to continue following spontaneous running. Thus, the experimental activity bout was artificially lengthened to 2–9 h in 67 experiments. The onset of the subsequent rest episodes occurred independent of the duration of the preceding . The duration of was dependent on the preceding, experimental in a periodic fashion. The interval experimental (=lengthened +following ) was equal to one, two or three times the control (obtained on nonexperimental days). This result fits the prediction of a clock model and is in conflict with a monotonicincrease of with , as expected in a homeostatic, restorative process.It is concluded that the ultradian timing of activity in the common vole can be explained neither by homeostatic hunger or thirst mechanisms nor by homeostatic rest/activity regulation. The results strongly suggest an independent clock system generating ultradian feeding rhythms in the common vole.Abbreviations DD continuous darkness - LD light-dark regime - LL continuous light - RCA retrochiasmatic area - ARC arcuate nucleus - SCN suprachiasmatic nuclei - ultradian period - ultradian activity time - ultradian rest time  相似文献   

13.
Indole-3-acetic acid (IAA), fusicoccin and weak acids all lower the cytoplasmic pH (pHi) and induce elongation growth of maize (Zea mays L.) coleoptiles. Gibberellic acid (GA3) also induces elongation growth and we have used confocal laser scanning microscopy to study the effects of GA3 on pHi employing the pH-indicator dyes, 2,7-bis(2-carboxyethyl)-5-(and-6) carboxyfluorescein and carboxy-semi-naphthorhodafluor-1. We confirm that GA3 induces growth significantly in light-grown but only slightly or not at all in dark-grown coleoptiles. The growth induced by IAA treatment was similar in light- and dark-grown coleoptiles. The pHi decreased by up to 0.6 units during the first 7 min of GA3 or IAA treatment of both light- and dark-grown coleoptiles. Gibberellic acid inhibited IAA-induced growth of dark-grown coleoptiles. Hence, in dark-grown coleoptiles GA3 may activate either directly or indirectly reactions that interfere with the signalling pathway leading to elongation growth. The possible role of pHi in growth is discussed.Abbreviations ABA abscisic acid - AM acetoxymethyl ester - BCECF 2,7-bis(2-carboxyethyl)-5-(and-6) carboxyfluorescein - [Ca2+]i cytoplasmic free calcium - GA(n) gibberellin A(n) - GA3 gibberellic acid - IAA indole-3-acetic acid - PGR plant growth regulator - pHi cytoplasmic pH - Pipes piperazine-N,N-bis[2-ethanesulfonic acid] - Snarf-1 carboxy-semi-naphthorhodafluor-1 We thank Dr R. King (CSIRO, Canberra) for providing the GA1 and T. Phillips for processing the photographic material. H.R. Irving was supported by an Australian Research Council Research Fellowship and the work was supported by an Australian Research Council grant.  相似文献   

14.
The regulation of phosphoenolpyruvate carboxylase (PEPCase, EC. 4.1.1.31) and PEPCase kinase was investigated using barley (Hordeum vulgare L.) mesophyll protoplasts. Incubation of protoplasts in the light resulted in a reduction in the sensitivity of PEPCase to the inhibitor L-malate; PEPCase from protoplasts incubated in the light for 1 h was inhibited 48±2% by 2mM malate, whereas the enzyme from protoplasts incubated for 1 h in the dark was inhibited by 67±2%. Light-induced reduction of sensitivity of PEPCase to malate was decreased by cycloheximide (CHM), indicating the involvement of protein synthesis. The PEPCase kinase in protoplasts increased with time after isolation in darkness, and increased still further following light treatment. The increase in kinase activity in the light was sensitive to CHM. When protoplasts were illuminated in the presence of EGTA and the calcium ionophore A23187 to reduce intracellular Ca2+, the reduction in the senstivity of PEPCase to malate was enhanced, though no more PEPCase kinase activity was detected than in protoplasts illuminated in the absence of EGTA and A23187. Incubation with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) had no effect on the light-induced reduction of sensitivity of PEPCase to malate inhibition or on light-activation of PEPCase kinase. These results indicate that there is a constitutive PEPCase kinase activity in C3 leaf tissue, that there is another kinase which is light-activated in a CHMsensitive way, that the sensitivity of PEPCase to its inhibitor may not always be correlated with apparent PEPCase kinase actvity, and that PEPCase and PEPCase kinase are regulated in a different manner in C3 protoplasts than in C4 protoplasts or leaf tissue.Abbreviations CAM Crassulacean acid metabolism - Chl chlorophyll - CHM cycloheximide - DCMU 3-(3,4-dichloro-phenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - PEPCase PEP carboxylase  相似文献   

15.
The effect of lipid peroxidation on the Mg2+-independent and Mg2+-dependent activity of brain cell membrane 5-nucleotidase was determined and the affinity of the active sites of Mg2+-dependent enzyme for 5-AMP (substrate) and Mg2+ (activator) was examined. Brain cell membranes were peroxidized at 37°C in the presence of 100 M ascorbate and 25 M FeCl2 (resultant) for 10 min. The activity of 5-nucleotidase and lipid peroxidation products (thiobarbituric acid reactive substances) were determined. At 10 min, the level of lipid peroxidation products increased from 0.20±0.10 to 17.5±1.5 nmoles malonaldehyde/mg membrane protein. The activity of Mg2+-independent 5-nucleotidase increased from 0.201±0.020 in controls to 0.305±0.028 mol Pi/mg protein/hr in peroxidized membranes. In the presence of 10mM Mg2+, the activity increased by 5.8-fold in the peroxidized membrane preparation in comparison to 14-fold in control In peroxidized preparation, the affinity of active site of Mg2+-dependent 5-nucleotidase for 5-AMP tripled, as indicated by a significant decrease inK m (K m=95±2 M AMP for control;K m=32±2 MAMP for peroxidized).V max was significantly reduced from 3.35±0.16 in control to 1.70±.09 moles Pi/mg protein in peroxidized membranes. The affinity of the active site for Mg2+ significantly increased (K m=6.17±0.37 mM Mg2+ for control;K m=4.0±0.31 peroxidized). The data demonstrate that lipid peroxidation modifies the Mg2+-dependent 5-nucleotidase function by altering the active sites for both the substrate and the activator. The modification of the 5-nucleotidase activity and the loss of Mg2+-dependent activation observed in this in-vitro study are similar to the changes previously observed by us in the hypoxic brain in-vivo. This suggests that lipid peroxidation which specifically alters the active site may be the underlying mechanism of the modification of 5-nucleotidase during hypoxia.  相似文献   

16.
Strain B51 capable of degrading polychlorinated biphenyls (PCB) was isolated from soil contaminated with wastes from the chemical industry. Based on its morphological and chemotaxonomic characteristics, the strain was identified as a Microbacterium sp. Experiments with washed cells showed that strain B51 is able to degrade ortho- and para-substituted mono-, di-, and trichlorinated biphenyls (MCB, DCB, and TCB, respectively). Unlike the known PCB degraders, Microbacterium sp. B51 is able to oxidize the ortho-chlorinated ring of 2,2-DCB and 2,4-DCB and the para-chlorinated ring of 4.4-DCB. The degradation of 2,4-DCB and 4,4-DCB was associated with the accumulation of 4-chlorobenzoic acid (4-CBA) in the medium in amounts comprising 80–90% of the theoretical yield. The strain was able to utilize 2-MCB, 2,2-DCB, and their intermediate 2-CBA and to oxidize the mono(ortho)-chlorinated ring of 2,4,2-TCB and the di(ortho-para)-chlorinated ring of 2,4,4-TCB. A mixed culture of Microbacterium sp. B51 and the 4-CBA-degrading bacterium Arthrobacter sp. H5 was found to grow well on 1 g/l 2,4-DCB as the sole source of carbon and energy.  相似文献   

17.
The phosphorylation of at least five proteins with Mr of about 160,000; 93,000; 85,000; 45,000; and 29,000 respectively was demonstrated in crude extracts from the facultative chemolithotrophThiobacillus novellus. The incorporation of [-32P]phosphate from ATP into these proteins was dependent on the presence of magnesium ion. The phosphorylation reactions were found to be reversible and required 12.5 mM NaF for maximal activity, indicating the action of phosphatases. In addition, 3,5-cAMP had little effect on protein kinase activity, whereas Ca2+ alone was weakly stimulatory. This activation was enhanced by the addition of 3,5-cAMP. Ca2+ with calmodulin had a strong stimulatory effect on phosphate incorporation into the proteins. A highly purified preparation containing only the 160, 93, and 85 kDa proteins phosphorylated histone, whereas the uptake of32P by the three proteins was inhibited. Rabbit muscle phosphorylase b prevented incorporation of radiolabel only into the 160 and 93 kDa proteins.  相似文献   

18.
Crude extracts of Rhodospirillum rubrum catalyzed the formation of acid-volatile radioactivity from (35S) sulfate, (35S) adenosine-5-phosphosulfate, and (35S) 3-phosphoadenosine-5-phosphosulfate. An enzyme fraction similar to APS-sulfotransferases from plant sources was purified 228-fold from Rhodospirillum rubrum. It is suggested here that this enzyme is specific for adenosine-5-phosphosulfate, because the purified enzyme fraction metabolized adenosine-5-phosphosulfate, however, only at a rate of 1/10 of that with adenosine-5-phosphosulfate. Further, the reaction with 3-phosphoadenosine-5-phosphosulfate was inhibited with 3-phosphoadenosine-5-phosphate whereas this nucleotide had no effect on the reaction with adenosine-5-phosphosulfate. For this activity with adenosine-5-phosphosulfate the name APS-sulfotransferase is suggested. This APS-sulfotransferase needs thiols for activity; good rates were obtained with either dithioerythritol or reduced glutathione; other thiols like cysteine, 2-3-dimercaptopropanol or mercaptoethanol are less effective. The electron donor methylviologen did not catalyze this reaction. The pH-optimum was about 9.0; the apparent K m for adenosine-5-phosphosulfate was determined to be 0.05 mM with this so far purified enzyme fraction. Enzyme activity was increased with K2SO4 and Na2SO4 and was inhibited by 5-AMP. These properties are similar to assimilatory APS-sulfotransferases from spinach and Chlorella.Abbreviations APS adenosine-5-phosphosulfate - PAPS 3-phosphoadenosine-5-phosphosulfate - 5-AMP adenosine-5-monophosphate - 3-AMP adenosine-3-monophosphate - 3-5-ADP 3-phosphoadenosine-5-phosphate (PAP) - DTE dithiorythritol - GSH reduced glutathione - BAL 2-3-dimercaptopropanol  相似文献   

19.
The extrathyroidal conversion of thyroxine to triiodothyronine in the snake, Elaphe taeniura, has been determined in vitro. The liver, kidney and pancreas are important organs showing significant 5-deiodinase activity. The pancreas has a higher conversion rate (18.5±3.58 pmol·min-1·mg protein-1) than other vertebrate tissues that have been studied. The 5-deiodinase activity is dependent on substrate (thyroxine) concentration, cofactor, i.e. dithioerythritol concentration, temperature, duration of incubation and pH. It is sensitive to iopanoic acid, propylthiouracil, salicylate and propranolol. It is also indicative that the 5-deiodinase activity increased and decreased, respectively, in snakes with experimentally induced hyper- and hypo-thyroidism. These characteristics suggest that snake 5-deiodinase is similar to that of mammals, probably of type I category.Abbreviations ANOVA analysis of variance - BSA bovine serum albumin - BW body weight - cpm counts per minute - 5D 5-deiodinase - DTE dithioerythritol - EDTA ethylenediamine tetraacetate - IOP iopanoic acid - K m Michaelis-Menten constant - L/D Light/Dark - MW molecular weight - NRS normal rabbit serum - PEG polyethylene glycol - %B percentage of added label found in the pellet - PTU propylthiouracil - RIA radioimmunoassay - rT3 3,5,5-triiodothyronine - SPSS Statistical Package for the Social Sciences - T3 3,5,3-triiodothyronine - T4 thyroxine - TRIS Tris (hydroxymethyl) aminomethane - Tx thyroidectomized - V max maximum velocity of enzyme reaction  相似文献   

20.
《Phytochemistry》1987,26(3):611-614
The GA3-mediated activation of monophenolase (about 12-fold stimulation) in embryo-less half-seeds of wheat was mimicked by the addition of inorganic phosphate (Pi, 50 mM). Similarly, the hormone-induced altered molecular properties of monophenolase, such as the shift in the pH optimum towards alkalinity (pH 9.0), the relatively increased thermostability of the enzyme at 55° and the changed pattern of multiple forms of the enzyme, were also seen in Pi-treated half-seeds. Furthermore, the simultaneous addition of GA3 and Pi to wheat half-seeds showed no cumulative effect on the enhancement of monophenolase activity. This indicated that both GA3 and Pi regulated monophenolase activity through a common mechanism. Abscisic acid effectively blocked the GA3- and Pi-directed stimulation of monophenolase. Since GA3 treatment of half-seeds increased the free pool of Pi (2.5-fold), we envisage that the Pi-mediated activation of monophenolase is of physiological relevance in our system. However, the in vitro addition of Pi (50 mM) to water-imbibed control half-seeds (48 hr) during enzyme extraction failed to activate monophenolase. We thus consider that the high pool of Pi, generated by GA3 in half-seeds, or even the direct addition of Pi to half-seeds in vivo, seems necessary for some metabolic events which eventually trigger the activation of monophenolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号