首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of Toll-like receptor 4 (TLR4)/nuclear factor-kappa-B (NF-κB) in intestinal mucosal barrier damage and bacterial translocation under hypoxic exposure is unclear. Here, we investigated their role using an acute hypobaric hypoxia model. Adult Sprague-Dawley rats were divided into control (C), hypoxia (H), hypoxia+NF-κB inhibitor pyrrolidinedithiocarbamic acid (PDTC) (100 mg. kg) (HP), hypoxia+0.5 mg/kg lipopolysaccharide (HPL), and hypoxia+PDTC+LPS (HPL) group. Except control group, other four groups were placed in a hypobaric chamber set at 7000 m. Samples were collected at 72 h after pressure reduction. Damage in ultrastructure of the intestinal tract was examined by transmission electron microscopy and bacterial translocation was detected by cultivation. Kinetic turbidimetric assay was used to measure the serum LPS.ELISA was performed to detect TNF-α and IL-6 serum concentrations. Fluorescent quantitative RT-PCR was used to measure TLR4 mRNA levels was measured using quantitative RT-PCR and protein of NF-κB p65 was measured by western blotting. Different degrees of intestinal mucosa damage were observed in groups H and HL. The damage was significantly alleviated after blockage of the TLR4/NF-κB signaling pathway. PDTC- treatment also reversed hyoxia- and LPS-induced bacterial translocation rate and increased serum levels of LPS, TNF-α, and IL-6. TLR4 mRNA levels and NF-κB p65 expression were consistent with the serum factor results. This study suggested that TLR4 and NF-κB expression increased in rat intestinal tissues after acute hypoxia exposure. PDTC-treatment reversed TLR4 and NF-κB upregulation and alleviated damage to the intestinal tract and bacterial translocation. Thus, the TLR4/NF-κB signaling pathway may be critical to the mechanism underlying hypoxia-induced damage to intestinal barrier function and bacterial translocation.  相似文献   

3.
4.
Interleukin-1β (IL-1β) plays a critical mediator in the pathogenesis of eye diseases. The implication of IL-1β in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of IL-1β-induced MMP-9 expression in Statens Seruminstitut Rabbit Corneal Cells (SIRCs) are largely unclear. Here, we demonstrated that in SIRCs, IL-1β induced MMP-9 promoter activity and mRNA expression associated with an increase in the secretion of pro-MMP-9. IL-1β-induced pro-MMP-9 expression and MMP-9 mRNA levels were attenuated by pretreatment with the inhibitor of MEK1/2 (U0126), JNK1/2 (SP600125), NF-κB (Bay11-7082), or AP-1 (Tanshinone IIA) and transfection with siRNA of p42 or JNK2. Moreover, IL-1β markedly stimulated p42/p44 MAPK and JNK1/2 phosphorylation in SIRCs. In addition, IL-1β also enhanced p42/p44 MAPK translocation from the cytosol into the nucleus. On the other hand, IL-1β induced c-Jun and c-Fos mRNA expression, c-Jun phosphorylation, and AP-1 promoter activity. NF-κB translocation, IκBα degradation, and NF-κB promoter activity were also enhanced by IL-1β. Pretreatment with U0126 or SP600125 inhibited IL-1β-induced AP-1 and NF-κB promoter activity, but not NF-κB translocation from the cytosol into the nucleus. Finally, we established that IL-1β could stimulate SIRCs migration via p42/p44 MAPK-, JNK1/2-, AP-1-, and NF-κB-dependent MMP-9 induction. These results suggested that NF-κB and AP-1 activated by JNK1/2 and p42/p44 MAPK cascade are involved in IL-1β-induced MMP-9 expression in SIRCs.  相似文献   

5.
The lymphatic endothelium plays an important role in the maintenance of tissue fluid homeostasis. It also participates in the pathogenesis of several inflammatory diseases. However, little is known about the underlying mechanisms by which lymphatic endothelial cell responds to inflammatory stimuli. In this study, we explored the mechanisms by which lipopolysaccharide (LPS) induces cyclooxygenase (COX)-2 expression in murine lymphatic endothelial cells (SV-LECs). LPS caused increases in cox-2 mRNA and protein levels, as well as in COX-2 promoter luciferase activity in SV-LECs. These actions were associated with protein phosphatase 2A (PP2A), apoptosis signal-regulating kinase 1 (ASK1), JNK1/2 and p38MAPK activation, and NF-κB subunit p65 and C/EBPβ phosphorylation. PP2A-ASK1 signaling blockade reduced LPS-induced JNK1/2, p38MAPK, p65 and C/EBPβ phosphorylation. Transfection with PP2A siRNA reduced LPS’s effects on p65 and C/EBPβ binding to the COX-2 promoter region. Transfected with the NF-κB or C/EBPβ site deletion of COX-2 reporter construct also abrogated LPS’s enhancing effect on COX-2 promoter luciferase activity in SV-LECs. Taken together, the induction of COX-2 in SV-LECs exposed to LPS may involve PP2A-ASK1-JNK and/or p38MAPK-NF-κB and/or C/EBPβ cascade.  相似文献   

6.
7.
8.
9.
10.

Objective

Recently, salusin-β has been reported to have pro-atherosclerotic effects, but salusin-α has anti-atherosclerotic effects. Our previous study has shown that salusin-β but not salusin-α promotes vascular inflammation in apoE-deficient mice. However, the underlying mechanism remains unknown. In this study, we observed the effect of salusins on inflammatory responses and the MAPK-NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs).

Methods and Results

HUVECs were incubated with different concentrations of salusin-α and salusin-β. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) were quantified using quantitative real-time polymerase chain reaction (PCR). The protein expressions of VCAM-1, MCP-1, I-κBα, NF-κB, p-JNK and p-p38 MAPK were measured using western blotting analysis. Our results showed that in HUVECs, salusin-β could up-regulate the levels of IL-6, TNF-α, VCAM-1 and MCP-1, promote I-κBα degradation and NF-κB activation, and increase the phosphorylation of JNK and p38 MAPK. These effects could be inhibited by p38 MAPK inhibitor SB203580 and/or JNK inhibitor SP600125. In contrast, salusin-α could selectively decrease VCAM-1 protein, but did not show any effect on the expressions of VCAM-1 mRNA, TNF-α, IL-6, MCP-1, I-κBα, NF-κB, p-JNK or p-p38 MAPK.

Conclusion

Salusin-β was able to promote inflammatory responses in HUVECs via the p38 MAPK-NF-κB and JNK-NF-κB pathways. In contrast, salusin-α failed to show any significant effects on the inflammatory responses in HUVECs. These results provide further insight into the mechanisms behind salusins in vascular inflammation and offer a potential target for the prevention and treatment of atherosclerosis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号