共查询到20条相似文献,搜索用时 0 毫秒
1.
A differential medium for the identification of races 1 and 4 of Fusarium oxysporum f.sp. cubense 总被引:1,自引:0,他引:1
W.C. Wong 《Letters in applied microbiology》1988,6(3):51-54
Three distinctive colony types were produced when Fusarium oxysporum f.sp. cubense (Foc ) races 1 and 4 were cultured on a defined basal medium containing an appropriate carbon source and bromothymol blue as a pH indicator. These distinctive cultural characteristics have been used as a specific and reliable method for the differentiation of races 1 and 4 of Foc from other species of Fusarium. 相似文献
2.
Fusarium oxysporum (Schlechtend.: Fr.) f. sp. melongenae (Fomg) recovered from symptomatic eggplants from five eggplant‐growing areas in Turkey, including the south, west, north‐west, north and south‐east regions. The objective of this study was to investigate the genetic diversity of the Fomg isolates from different geographical location by pathogenicity and VCG tests. Three hundred and seventy‐four Fomg isolates were classified as highly virulent, virulent, moderately virulent and low virulent through pathogenicity assays. No correlation was observed between virulence of Fomg isolates and their locations. The nitrate non‐utilizing mutants (nit) were generated as nit1, nit3 and NitM, based on phenotyping of Fomg growth characteristics of the Fomg isolates on diagnostic media with various sources of nitrogen. The majority of nit mutants (39.4%) recovered were nit1 from minimal medium (MM) containing of 2.0% potassium chlorate (MMC). The most of Fomg isolates were identified as heterokaryon self‐compatible (HSC) based on their ability to form a stable heterokaryon, while four isolates were classified as heterokaryon self‐incompatible (HSI). A large amount of Fomg isolates were vegetatively compatible and assigned as members of the same VCG, whereas nit mutants of 10 Fomg isolates that did not complement with tester strains only paired by themselves (HSC), these isolates were termed vegetative incompatible (vic). The complementation of 33 isolates with tester strains was slow and quite weak, but not paired with themselves even though they are HSC. About 96.3% of the Fomg isolates were assigned to VCG 0320, while the remaining 3.7% were classified as vegetative incompatible group. 相似文献
3.
香蕉枯萎病菌Fow1基因的克隆及序列分析 总被引:2,自引:0,他引:2
为了解Fow1基因在尖镰刀菌古巴专化型侵染香蕉过程中的作用,及其与尖镰刀菌古巴专化型生理小种1号和生理小种4号之间的致病力差异的关系,采用PCR和RT-PCR方法扩增了2个生理小种的Fow1基因,并对扩增产物进行了克隆测序及相似序列搜索和比对,还对基因编码的蛋白进行了结构预测和功能分析。研究结果表明2个生理小种Fow1基因开放阅读框均为957bp,编码318个氨基酸,基因序列和氨基酸序列差异小,而且两个生理小种Fow1基因所编码的蛋白均具有酵母线粒体载体蛋白典型的结构特征,推测Fow1基因可能为香蕉枯萎病菌在香蕉组织中定殖所必需。从Fow1基因序列及其编码蛋白的氨基酸序列看,2个生理小种致病力的差异与Fow1基因并无明显对应关系,这为进一步研究Fow1基因功能奠定了基础。 相似文献
4.
5.
Naama Jessica de Assis Melo Andréia Mitsa Paiva Negreiros Hohana Lissa de Sousa Medeiros Rui Sales Júnior 《Journal of Phytopathology》2020,168(2):81-87
One of the main diseases that reduces production of passion fruit crops is Fusarium wilt, caused by the fungus Fusarium oxysporum f.sp. passiflorae (FOP). The use of resistant rootstocks, such as the species Passiflora cincinnata, is one of the management strategies used to control this disease. The objective of this work was to evaluate the pathogenicity of different isolates of FOP on P. edulis and P. cincinnata in order to identify its potential for use in areas with a history of the disease. Thirteen isolates of the fungus were used, and the inoculums were produced at a concentration of 106 CFU/ml. Seedlings were produced in coconut fibre, and the root system was then immersed for five minutes in the conidial suspension before being replanted in the 770-ml pots. Inoculated seedlings of P. edulis and P. cincinnata at the three-leaf stage were daily evaluated from the second day after inoculation (DAI) until day 90. All isolates were pathogenic in both Passiflora species; however, the incidence, severity and mortality were higher in P. edulis. There was a statistically significant difference for the incubation period of the FOP 23 and FOP 57 isolates, being higher in P. edulis. We concluded that P. cincinnata was susceptible to FOP. 相似文献
6.
Andrew Taylor Viktória Vágány Alison C. Jackson Richard J. Harrison Alessandro Rainoni John P. Clarkson 《Molecular Plant Pathology》2016,17(7):1032-1047
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. 相似文献
7.
Hacer Handan Altinok 《Journal of Phytopathology》2013,161(5):335-340
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season. 相似文献
8.
9.
Stephanie J. Cole Alexander J. Yoon Kym F. Faull Andrew C. Diener 《Molecular Plant Pathology》2014,15(6):589-600
Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild‐type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone‐related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild‐type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine‐ and leucine‐conjugated jasmonate (JA‐Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA‐Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. 相似文献
10.
Development of Pathogenicity and AFLP to Characterize Fusarium oxysporum f.sp. momordicae Isolates from Bitter Gourd in China 下载免费PDF全文
Zhen‐Dong Chen Ru‐Kui Huang Qi‐Qin Li Jun‐Li Wen Gao‐Qing Yuan 《Journal of Phytopathology》2015,163(3):202-211
Bitter gourd (Momordica charantia L.) cultivated in China is regarded as an important vegetable crop and is of considerable economic importance. However, it is susceptible to fusarium wilt, which causes heavy economic losses. Forty‐eight isolates were isolated from diseased bitter gourd plants that displayed typical fusarium wilt symptoms. Based on the morphological features, the rDNA internal transcribed space (ITS) sequences, pathogenicity and host biotypes, all of the isolates tested were pathogenic to the susceptible bitter gourd plants species (cv. ‘Guinongke No. 2’) and were identified as Fusarium oxysporum f. sp. momordicae (FOM). Our results classified different isolates as slightly, moderately or highly virulent. Among the isolates tested, 43 isolates slightly infected bottle gourd (Lagenaria siceraria var. clavata), whereas they did not infect other species from the family Cucurbitaceae. Genetic diversity among 48 isolates was characterized using amplified fragment length polymorphism (AFLP) analysis. The number of bands amplified by each primer pairs ranged from 41 to 66, with sizes ranging from 200 to 500 bp. A total of 366 bands were observed, out of which 363 were polymorphic (99.14%). The Nei's genetic identity of the six geographical populations varied from 0.7362 to 0.9707. The mean Nei's gene diversity index (H = 0.2644) and the mean Shannon's information index (I = 0.4071) at species level were higher than ones at populations level, indicated that the variation within populations was greater than that among populations. The Nei's GST (0.5103) and gene flow (Nm = 0.4923) revealed that genetic differentiation was mainly among populations and few gene exchanges. The dendrogram obtained from AFLP marker showed that there was a good correlation between isolates from different geographical locations and their pathogenicity. The AFLP marker effectively distinguished the high virulent isolates from the less virulent isolates. The highly virulent isolates were distinctly separated in different clusters, which indicated a significantly high correlation with the geographical origin in the AFLP dendrogram. The pathogenicity and molecular marker analysis confirmed the presence of variation in virulence as well as genetic diversity among the FOM isolates studied. 相似文献
11.
Prem Lal Kashyap Shalini Rai Sudheer Kumar Alok Kumar Srivastava 《Archives Of Phytopathology And Plant Protection》2016,49(19-20):533-553
The present study describes the comparative analysis of five genetic markers viz., random amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus (ERIC), BOX-elements, mating type (MAT) locus and microsatellites for genetic analysis of virulent isolates of Fusarium oxysporum f. sp. ciceri (FOC) representing seven races from chickpea. Phylogenetic analysis of translation elongation factor 1-α and internal transcribed spacer region separated all the FOC isolates into two major clades. Majority of the isolates (FOC 63, FOC 33, FOC 40, FOC 100, FOC 6, FOC 22, FOC 31, FOC 79 and NDFOC 98) representing race 1, 2, 5 and 6 grouped in clade I, while isolates (FOC 90, FOC 108 and FOC 88) belonging to race 3, 4 and 7 were clustered in clade II. Isolates (FOC 33, FOC 40, FOC 17 and FOC 100) representing race 2 had MAT-2 loci, while race 1 isolates (FOC 63, FOC 72 and FOC 76) contained MAT-1 loci only. The principal component analysis (PCA) of RAPD, ERIC, BOX and microsatellite marker data explained 39.94, 39.98, 42.04 and 62.59% of the total variation among test isolates, respectively. Furthermore, there was no correlation existed between genetic diversity, virulence, race compositions or geographic origin of the isolates. Overall, these findings will assist in better understanding of the genetic variability and ideally, will improve disease management practices. 相似文献
12.
Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceri prevalent in India 总被引:1,自引:0,他引:1
M. P. Barve M. P. Haware M. N. Sainani P. K. Ranjekar V. S. Gupta 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,102(1):138-147
Fusarium oxysporum f. sp. ciceri, the causal agent of chickpea wilt, is an important fungal pathogen in India. Thirteen oligonucleotide probes complementary
to microsatellite loci, in combination with 11 restriction enzymes, were used to assess the potential of such markers to study
genetic variability in four Indian races of the pathogen. Hybridisation patterns, which were dependent upon both the restriction
enzyme and oligonucleotide probe used, revealed the presence of different repeat motifs in the F. oxysporum f. sp. ciceri genome. Among the restriction enzymes used, hexa-cutting enzymes were more informative than tetra- and penta-cutting enzymes,
whereas tetranucleotide and trinucleotide repeats yielded better hybridisation patterns than dinucleotide repeats. Dependent
upon the levels of polymorphism detected, we have identified (AGT)5, (ATC)5 and (GATA)4 as the best fingerprinting probes for the F. oxysporum f. sp. ciceri races. The distribution of microsatellite repeats in the genome revealed races 1 and 4 to be closely related at a similarity
index value of 76.6%, as compared to race 2 at a similarity value of 67.3%; race 3 was very distinct at a similarity value
of 26.7%. Our study demonstrates the potential of oligonucleotide probes for fingerprinting and studying variability in the
F. oxysporum f. sp. ciceri races and represents a step towards the identification of potential race diagnostic markers.
Received: 12 March 2000 / Accepted: 14 April 2000 相似文献
13.
Morita K Kimura S Saito M Shinoyama H Usami T Amemiya Y Shishido M 《Mycopathologia》2005,160(1):67-73
Pathogenicity-impaired mutants, B02 and H15, of Fusarium oxysporum f. sp. lycorpersici (FOL) were obtained using restriction enzyme-mediated integration. Disease severities of Fusarium wilt caused by these mutants were significantly reduced, and their disease development rates were correlated with their colonization rates in tomato vessels. Both B02 and H15 produced significantly smaller amounts of extracellular proteins as well as fusaric acid than the wild-type. Southern blot analyses suggested that B02 and H15 likely contain a single and three copies of transformation vector, respectively. These mutants may thus be useful in isolating genes involved in pathogenicity of FOL. 相似文献
14.
15.
Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry‐ and tomato‐infecting formae speciales of Fusarium oxysporum 下载免费PDF全文
Jaime Simbaqueba Ann‐Maree Catanzariti Carolina González David A. Jones 《Molecular Plant Pathology》2018,19(10):2302-2318
16.
基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价 总被引:7,自引:0,他引:7
利用RAPD、ISSR和AFLP分子标记技术对50个西瓜枯萎病菌株进行了分析。结果表明,21个RAPD引物、21个ISSR引物和21对AFLP引物分别对供试菌株扩增出113、134和389条带,三种分子标记的遗传相似系数比较一致,均可揭示西瓜枯萎病菌的遗传变异特点。三种分子标记产生的聚类分析结果存在一定差异,其中RAPD类群与生理小种和地理来源之间均不存在明显关系;而AFLP和ISSR类群与生理小种之间存在一定相关性,与菌株的地理来源关系不明显。 相似文献
17.
利用RAPD、ISSR和AFLP分子标记技术对50个西瓜枯萎病菌株进行了分析。结果表明,21个RAPD引物、21个ISSR引物和21对AFLP引物分别对供试菌株扩增出113、134和389条带,三种分子标记的遗传相似系数比较一致,均可揭示西瓜枯萎病菌的遗传变异特点。三种分子标记产生的聚类分析结果存在一定差异,其中RAPD类群与生理小种和地理来源之间均不存在明显关系;而AFLP和ISSR类群与生理小种之间存在一定相关性,与菌株的地理来源关系不明显。 相似文献
18.
Fungicidal activity of Ranunculus asiaticus and other weeds against Fusarium oxysporum f.sp. lycopersici 总被引:1,自引:0,他引:1
J R. QASEM 《The Annals of applied biology》1996,128(3):533-540
The effects of aqueous extracts of some common weed species against Fusarium oxysporum Schlecht f.sp. lycopersici (the causal agent of tomato wilt disease) were investigated under laboratory conditions. Anagallis foemina L., Cerastium dicotomum L., Falcaria vulgaris L., Ranunculus asiaticus L., Scorpiurus mur-icatus L. and Solanum nigrum L. extracts were the most toxic to the fungus. Further studies on buttercup (Ranunculus asiaticus L.) showed that fresh shoot extract of this species prevented growth of F. oxysporum when incorporated into agar medium. Extracts of different parts of the plant inhibited fungus growth and sporulation, but the fungitoxicity decreased with incubation period with only slight changes in the toxicity of fresh shoot extract. The shoot and fresh parts extracts were more toxic than root and dried tissue extracts. Addition of 0.5 ml fresh shoot or 1 ml fresh root extract to the growing medium significantly reduced fungal colony growth, and the effect was extract concentration dependent. Fresh shoot extract of R. asiaticus added to a liquid medium significantly reduced mycelial dry weight compared with the control, and incorporation of 0.1 g dried shoot or 0.2 g dried roots in the media strongly inhibited fungus growth. Results of a pot experiment showed no harmful effects of R. asiaticus extracts on tomato growth. 相似文献
19.
Purification and characterization of tomatinase from Fusarium oxysporum f. sp. lycopersici. 总被引:1,自引:0,他引:1 下载免费PDF全文
The antifungal compound alpha-tomatine, present in tomato plants, has been reported to provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a tomato pathogen, produces an extracellular enzyme inducible by alpha-tomatine. This enzyme, known as tomatinase, catalyzes the hydrolysis of alpha-tomatine into its nonfungitoxic forms, tomatidine and beta-lycotetraose. The maximal tomatinase activity in the fungal culture medium was observed after 48 h of incubation of germinated conidia at an alpha-tomatine concentration of 20 micrograms/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 35,000, and the enzyme was then purified to electrophoretic homogeneity by a procedure that includes preparative isoelectric focusing and preparative gel electrophoresis as main steps. The purification procedure had a yield of 18%, and the protein was purified about 40-fold. Tomatinase was found to be a monomer of 50 kDa by both native gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The analytical isoelectric focusing of the native tomatinase showed at least five isoforms with pIs ranging from 4.8 to 5.8. Treatment with N-glycosidase F gave a single protein band of 45 kDa, indicating that the 50-kDa protein was N glycosylated. Tomatinase activity was optimum at 45 to 50 degrees C and at pH 5.5 to 7. The enzyme was stable at acidic pH and temperatures below 50 degrees C. The enzyme had no apparent requirement for cofactors, although Co2+ and Mn2+ produced a slight stimulating effect on tomatinase activity. Kinetic experiments at 30 degrees C gave a K(m) of 1.1 mM for alpha-tomatine and a Vmax of 118 mumol/min/mg. An activation energy of 88 kJ/mol was calculated. 相似文献
20.
The mode of inheritance of resistance to Fusarium oxysporum f.sp. cucumerinum races 1 and 2 in Wisconsin-2757 (WI-2757), a gynoecious cucumber (Cucumis sativus L.), was determined by analysing segregation of F1, F2 and BC1 populations of crosses with susceptible cultivar Straight-8. Resistance to either race 1 or race 2 in WI-2757 was conferred by a single dominant gene. In allelism tests, resistance to either race in WI-2757 was determined by the gene Fcu-1, which also confers resistance in line SMR-18. 相似文献