首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Bats of the speciesNoctilio albiventris, trained to discriminate differences in target distance, emitted pairs of pulses at a rate of 7–10/s, the first a constant frequency (CF) pulse of about 8 ms duration and 75 kHz frequency, followed after about 28 ms by a CF/FM pulse having a 6 ms, 75 kHz CF component that terminates in a 2 ms FM sweep to about 57 kHz.Loud free-running artificial pulses, simulating the bat's natural CF/FM echolocation sound, interfered with distance discrimination at repetition rates exceeding 5/s. Systematic modifications in the temporal and frequency structure of the artificial pulses resulted in orderly changes in the degree of interference. Artificial pulses simulating the natural CF or FM components alone had no effect, nor did 10/s white noise pulses, although constant white noise of the same intensity masked the behavior.Interference occurred when the CF of the artificial pulses was between 52 and 77 kHz, ending with a downward FM sweep of 25 kHz from the CF. For interference to occur there was a much more critical requirement that the FM sweep begin at approximately the frequency of the CF component. The FM sweep needed to be 11 kHz or greater bandwidth. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 30 ms, with maximal effect between 10 and 20 ms. However, a brief (2.0 ms) CF signal 2–27 ms before an isolated FM signal was as effective as a continuous CF component of the same duration.When coupled with the bat's own emissions, artificial CF/FM pulses interfered if they occurred after the bat's CF/FM pulse and before the next natural emission. A 2 ms FM sweep alone was effective in interfering with distance discrimination when it came 8–27 ms after the onset of the bat's own CF/FM pulse. Neither CF/FM nor FM artificial pulses interfered when they began during the bat's own emission. A 10 ms CF pulse alone had no effect at any time.These findings indicate thatN. albiventris uses both the CF and FM components of its short-CF/FM echolocation sound for distance discrimination. The CF onset activates a gating mechanism that, during a narrowly defined subsequent time window, enables the nervous system to process FM pulse-echo pairs for distance information, within a fairly broad frequency range, as long as the frequencies of the CF and the beginning of the FM sweep are nearly identical.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

2.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

3.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. During the discrimination trials, the bats emitted complex FM/CF/FM pulses containing first harmonic and dominant second harmonic components.Loud free running artificial pulses, simulating the CF/FM part of the natural echolocation components, interfered with the ability of the bat to discriminate target distance. Changes in the frequency or frequency pattern of the artificial pulses resulted in systematic changes in the degree of interference. Interference occurred when artificial CF/FM pulses were presented at frequencies near those of the bat's own first or second harmonic components.These findings suggest that Rhinolophus rouxi uses both the first and second harmonic components of its complex multiharmonic echolocation sound for distance discrimination. For interference to occur, the sound pattern of each harmonic component must contain a CF signal followed by an FM sweep beginning near the frequency of the CF.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

4.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. Loud free running artificial pulses, simulating the bat's natural long-CF/FM echolocation sounds, interfered with the ability of the bat to discriminate target distance. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 70 ms. A brief (2.0 ms) CF signal 2–68 ms before an isolated FM signal was as effective as a continuous CF component of the same duration. When coupled with the bat's own emissions, a 2 ms FM sweep alone was effective in interfering when it came 42 to 69 ms after the onset of the bat's pulse. The coupled FM artificial pulses did not interfere when they began during the bat's own emissions.It appears that the onset of the CF component activates a gating mechanism that establishes a time window during which FM component signals must occur for proper neural processing. A comparison with a similar gating mechanism in Noctillo albiventris, which emits short-CF/FM echolocation sounds, reveals that the temporal parameters of the time window of the gating mechanism are species specific and specified by the temporal structure of the echolocation sound pattern of each species.Abbreviations FM frequency modulated - CF constant frequency  相似文献   

5.
Summary Bats of the species Rhinolophus rouxi, Hipposideros lankadiva and Eptesicus fuscus were trained to discriminate between two simultaneously presented artificial insect wingbeat targets moving at different wingbeat rates. During the discrimination trials, R. rouxi, H. lankadiva and E. fuscus emitted long-CF/FM, short-CF/FM and FM echolocation sounds respectively. R. rouxi, H. lankadiva and E. fuscus were able to discriminate a difference in wingbeat rate of 2.7 Hz, 9.2 Hz and 15.8 Hz, respectively, between two simultaneously presented targets at an absolute wingbeat rate of 60 Hz, using a criterion of 75% correct responses.The performance of the different bat species is correlated with the echolocation signal design used by each species, particularly with the presence and relative duration of a narrowband component preceding a broadband FM component. These results provide behavioral evidence supporting the hypothesis that bats that use CF/FM echolocation sounds have adaptations for the perception of insect wingbeat motion and that long-CF/FM species are more specialized for this task than short-CF/FM species.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

6.
The foraging and echolocation behaviour of Myotis evotis was investigated during substrate-gleaning and aerial-hawking attacks. Bats gleaned moths from both the ground and a bark-covered trellis, however, they were equally adept at capturing flying moths. The calls emitted by M. evotis during substrate-gleaning sequences were short, broadband, and frequency-modulated (FM). Three behavioural phases were identified: search, hover, and attack. Gleaning search calls were significantly longer in duration, lower in highest frequency, and larger in bandwidth than hover/attack calls. Calls were detected in only 68% of gleaning sequences, and when they were emitted, bats ceased calling 200 ms before attacking. Terminal feeding buzzes, the rapid increase in pulse repetition rate associated with an attempted prey capture, were never recorded during gleaning attacks. The echolocation calls uttered by M. evotis during aerial-hawking foraging sequences were also short duration, high frequency, FM calls. Two distinct acoustic phases were identified: approach and terminal. Approach calls were significantly different from terminal calls in all variables measured. Calls were detected in 100% of aerial-hawking attacks and terminal feeding buzzes were invariably produced. Gleaning hover/attack calls were spectrally similar to aerial approach calls, but were shorter in duration and emitted at a significantly lower (but constant) repetition rate than aerial signals. Although the foraging environment (flight cage contents) remained unchanged between tasks (substrate-gleaning vs. aerial-hawking), bats emitted significantly lower amplitude calls while gleaning. We conclude that M. evotis adjusts its echolocation behaviour to meet the perceptual demands (acoustical constraints) imposed by each foraging situations.Abbreviations BW bandwidth - CF constant frequency - dB SPL decibels sound pressure level - FM frequency modulated - HF highest frequency - LF lowest frequency - PF peak frequency Presented at the meeting Acoustic Images in Bat Sonar, a conference on FM echolocation honoring Donald R. Griffin's contributions to experimental biology (June 14–16, Brown University, Providence RI).  相似文献   

7.
The acoustic structure of echolocation pulses emitted by Japanese pipistrellePipistrellus abramus (Temminck, 1840) bats during different phases of aerial hawking is described here for the first time. Behavioural observations of the foraging flight in conjunction with acoustical analysis of echolocation pulses indicated a flight path consisting of four distinct phases following the reconnaissance or search phase. Short (∼4.68 ms) and relatively broadband frequencymodulated (FM) pulses (∼23.55 kHz bandwidth) were emitted at a repetition rate of 15 Hz during presumed target approach. Presumed insect capture consisted of an early and a late buzz phase. Both buzz types were emitted at high repetition rates (111 Hz in early to 222 Hz in late) and consisted of very short, broadband FM pulses (1.26 ms in early to 0.3 ms in late). There was also a characteristically sharp drop in both the peak and terminal frequencies of each echolocation pulse during the transition from early to late buzz. No pulses were recorded during the final phase of foraging referred to as a “post-buzz pause”. Thus the foraging behaviour of this species consisted of five sequential phases involving four broad types of echolocation pulses.  相似文献   

8.
Most species of bats making echolocation use frequency modulated (FM) ultrasonic pulses to measure the distance to targets. These bats detect with a high accuracy the arrival time differences between emitted pulses and their echoes generated by targets. In order to clarify the neural mechanism for echolocation, we present neural model of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) along which information of echo delay times is processed. The bats increase the downward frequency sweep rate of emitted FM pulse as they approach the target. The functional role of this modulation of sweep rate is not yet clear. In order to investigate the role, we calculated the response properties of our models of IC, MGB, and AC changing the target distance and the sweep rate. We found based on the simulations that the distance of a target in various ranges may be encoded the most clearly into the activity pattern of delay time map network in AC, when the sweep rate of FM pulse used is coincided with the observed value which the bats adopt for each range of target distance.  相似文献   

9.
Summary Horseshoe bats (Rhinolophus rouxi) were deafened in their 3rd–5th postnatal week. Subsequently their vocalisations were monitored to evaluate the impact of audition on the development of echolocation pulses. Hearing impairment affected the echolocation pulses as follows: the frequency of the constant frequency (CF) component was altered by between + 4 kHz and – 14 kHz, and the dominance of the second harmonic of the pulses was neutralised by a relative increase in intensity of the first and third harmonics.A second experiment focused on possible influences of acoustical self-stimulation with echolocation pulses on the establishment of auditory fovea representation in the inferior colliculus (IC). Frequency control of echolocation pulses was disrupted by larynx denervation. Thereafter, the bats produced multiharmonic echolocation signals (4–11 harmonics) varying in frequency. IC tonotopy, however, as monitored by stereotaxic electrophysiology, showed the same developmental dynamics as seen in control specimens (Fig. 10).Both experiments indicate that throughout postnatal development echolocation pulses are under auditory feedback control, whereas maturation of the auditory fovea and shifts in its frequency tuning represent an innate process. The significance of this postnatal development might be the adjustment of the vocal motor system of each bat to the frequency of its personal auditory fovea.Abbreviations CF constant frequency - CF1, CF2, CF3 harmonics of pure tone components of the echolocation pulses - FM frequency modulation - IC inferior colliculus of the midbrain  相似文献   

10.
Echolocation is energetically costly for resting bats, but previous experiments suggested echolocation to come at no costs for flying bats. Yet, previous studies did not investigate the relationship between echolocation, flight speed, aerial manoeuvres and metabolism. We re-evaluated the 'no-cost' hypothesis, by quantifying the echolocation pulse rate, the number of aerial manoeuvres (landings and U-turns), and the costs of transport in the 5-g insectivorous bat Rhogeessa io (Vespertilionidae). On average, bats (n = 15) travelled at 1.76 ± 0.36 m s?1 and performed 11.2 ± 6.1 U-turns and 2.8 ± 2.9 ground landings when flying in an octagonal flight cage. Bats made more U-turns with decreasing wing loading (body weight divided by wing area). At flight, bats emitted 19.7 ± 2.7 echolocation pulses s?1 (range 15.3-25.8 pulses s?1), and metabolic rate averaged 2.84 ± 0.95 ml CO? min?1, which was more than 16 times higher than at rest. Bats did not echolocate while not engaged in flight. Costs of transport were not related to the rate of echolocation pulse emission or the number of U-turns, but increased with increasing number of landings; probably as a consequence of slower travel speed when staying briefly on ground. Metabolic power of flight was lower than predicted for R. io under the assumption that energetic costs of echolocation call production is additive to the aerodynamic costs of flight. Results of our experiment are consistent with the notion that echolocation does not add large energetic costs to the aerodynamic power requirements of flight in bats.  相似文献   

11.
Summary The relationship between the orientation sounds and hearing sensitivity in the greater Japanese horseshoe bat,Rhinolophus ferrumequinum nippon was studied.An orientation pulse consisted of a constant frequency (CF) component followed by a short downward frequency-modulated (FM) component. Sometimes, an initial upward FM component preceded the CF component. Duration of pulses was about 30 ms and the CF of resting pulses (RF) averaged 65.5 kHz. The best frequency (BF) at the lowest threshold in audiograms as measured by the pinna reflex averaged 66.1 kHz. Audiograms showed remarkable sharp cut-offs on both sides near the BF. The frequency difference between the BF and the RF was about 0.6 kHz, and the RF was always below the BF. The values of RF and BF were characteristically different from those of the European subspecies,Rhinolophus ferrumequinum ferrumequinum.Abbreviations BF best frequency - CF constant frequency - FM frequency modulated - RF resting frequency  相似文献   

12.
We recorded and characterized the echolocation calls emitted by the common vampire bat Desmodus rotundus during foraging in natural habitats in Chile. Signal design typically shows multiple harmonics consisting of a brief quasi-constant frequency (QCF) component at the beginning of the pulse followed by a downward frequency modulated component. Calls are characterized by long durations (5.5 ms) and emitted as single pulses or in groups of 2–3 pulses at a repetition rate of 29 Hz. The higher frequency ranges (85–35 kHz) and the unusual QCF component that characterized multiharmonic signals of free-flying D. rotundus in Chile is a remarkable feature for acoustic identification with other Chilean bats.  相似文献   

13.
Summary Five bats of the speciesPipistrellus stenopterus were trained in a two-alternative forced-choice procedure to discriminate between two fluttering targets. The positive target simulated an insect with a 50 Hz wingbeat rate. The negative target was varied between 0 and 48 Hz.The bats were able to discriminate a target with 41 Hz from a target with 50 Hz with 75% correct choices. In the discrimination task, they typically emitted echolocation calls of 2–4 ms duration sweeping from 60 kHz to 30 kHz. The duty cycle (i.e. fraction of time filled with echolocation sounds) increased when the targets fluttered, but was always lower than 3%.The performance ofP. stenopterus in discriminating fluttering targets is comparable to that of bats emitting longer sounds with constant-frequency (CF) components and a higher duty cycle. The FM-sounds ofP. stenopterus are short compared with the period of the fluttering targets, and therefore make it difficult for the animal to measure the time interval between two acoustic glints. Other cues may be prominent, such as the frequency modulation by Doppler shifts from the moving blades.  相似文献   

14.
A stereotyped approach phase vocalization response of Noctilio albiventris to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bats depended on the temporal pattern of frequency change of the continuously sweeping frequency modulated (FM) component of the signals. When the bats were presented with a CF/FM signal containing a time-reversed upward FM sweep, they responded with approach phase behavior at a performance level that was significantly below that seen with a CF/FM signal containing a naturally structured downward FM sweep. When the FM sweep was divided into a series of brief pure tone steps, the extent to which the bats showed a difference in their capability to process upward versus downward FM sweeps depended on the difference in frequency between the pure tone steps. The bats effectively processed downward but not upward FM sweeps when the difference in frequency between pure tone frequency elements of the FM sweeps was from about 100–200 Hz, but they effectually processed both downward and upward FM sweeps when the tonal elements composing the FM sweeps were separated by more than about 200 Hz. This suggests that the ability of the bats to effectively process downward but not upward FM sweeps is based on local interactions between adjacent frequency elements of the complex sounds.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

15.
研究了普氏蹄蝠(Hipposideros pratti)不同状态(飞行、悬挂)下的回声定位声波特征、形态特征和生态特征(捕食策略、捕食地和食物类型).结果表明,普氏蹄蝠的回声定位声波为CFFM型,在不同状态下,主频率有一定的差异,飞行状态的主频率略低于悬挂状态,表明普氏蹄蝠是利用多谱勒补偿效应来适应飞行速度引起的主频率变化,以进行准确的定位和有效的捕食;同时飞行状态下声脉冲时间、声脉冲间隔时间及FM带宽略低于悬挂状态,而声脉冲重复率和能率环略高于悬挂状态,表明普氏蹄蝠在不同状态下利用不同特征的声波进行捕食.由回声定位声波推断和野外观察可知,普氏蹄蝠可能在树冠周围以盘旋方式(在昆虫高峰期)或以捕蝇器式(在昆虫高峰期之后)捕食中等偏大的振翅昆虫(如甲虫).  相似文献   

16.
ABSTRACT

The peculiar acoustic structure of ultrasonic bouts of blind climbing rodents Typhlomys might provide insight on their potential function. We examined 1481 bouts consisting of 1-6 pulses; 49.7% of them were single-pulse bouts. Bout duration and inter-bout interval depended on the number of pulses per bout, whereas period from start of a previous bout to start of the next bout was constant (80.0±2.9 ms). Ultrasonic pulses (540 pulses measured in a subset of 234 bouts) were short (0.68±0.15 ms) sweeps with fundamental frequency slopes from 127.3±6.3 kHz to 64.1±4.6 kHz and peak frequency at 93.3±7.4 kHz, emitted within bouts with inter-pulse periods of 13.03±3.01 ms. Single pulses and start pulses of multi-pulse bouts were lower in frequency than other pulses of the bouts. In contrast, pulse duration was independent on pulse position within bout. Pulses of Typhlomys were reminiscent of echolocation calls of Murina and Myotis bats, but higher in frequency, much shorter, fainter, displayed a convex contour of frequency modulation and only the fundamental frequency band without harmonics and were organized in bouts, that is not characteristic for bat echolocation. Most probably, Typhlomys uses their ultrasonic pulses for call-based orientation during locomotion, including climbing and jumping among bush branches.  相似文献   

17.
Summary The echolocation sounds of the hipposiderid batAsellia tridens consist of a constant frequency (cf) component followed by a frequency modulated (fm) terminal downward sweep of 19–21 kHz. The cf-part constitutes about 7/10 of the entire signal. In individual roosting animals the frequencies of the cf-part of consecutive sounds (resting frequency) is kept very constant but varies from bat to bat. In 18Asellia tridens resting frequencies between 111–124 kHz have been measured.The sound duration in roosting and free flying bats is between 7–10 ms. In the approach and terminal phase of bats landing on a perch or flying through obstacles, the sound duration is reduced and the repetition rate increased the nearer the bat approaches the target. At the end of the terminal phase sound durations of a minimum of 3 ms have been measured. Flying bats lower their emission frequency in order to compensate for Doppler shifts caused by the flight movement. The echofrequency is therefore kept constant about 150–200 Hz above the resting frequency.In flights through obstacles consisting of vertically stretched wires with different diameters, the bats were able to avoid wires down to a diameter of 0.065 mm whereas at 0.05 mm the percentage of flights without collisions is far below the chance level. The results demonstrate that the echolocation behavior of the hipposiderid batAsellia tridens does not differ fundamentally from that of rhinolophid bats. As a result, a new suggestion for categorization of bats producing cf-fm orientation sounds is put forward.Abbreviations cf constant frequency component - fm frequency modulated component - P probability of collision-free flights through an obstacle of ertically tretched wires - I interval between wires - D minimal diameter of a bat with folded wings; , angle at which a bat approaches an obstacle - f A frequency of the cf-component of the emitted sound - f E frequency of the cf-component of the echo - f M frequency of the cf-component of the sounds recorded with the microphone - c speed of sound Supported by the Deutsche Forschungsgemeinschaft grant no. Schn 138/6-9We thank W. Hollerbach for technical assistance.  相似文献   

18.
The constant frequency component of the second harmonic (CF(2)) of echolocation sounds in Rhinolophus ferrumequinum nippon were measured using onboard telemetry microphones while the bats exhibited Doppler-shift compensation during flights with conspecifics. (1) The CF(2) frequency of pulses emitted by individual bats at rest (F (rest)) showed a long-term gradual decline by 0.22?kHz on average over a period of 3?months. The mean neighboring F (rest) (interindividual differences in F (rest) between neighboring bats when the bats were arranged in ascending order according to F (rest)) ranged from 0.08 to 0.11?kHz among 18 bats in a laboratory colony. (2) The standard deviation of observed echo CF(2) (reference frequency) for bats during paired flights ranged from 50 to 90?Hz, which was not significantly different from that during single flights. This finding suggests that during paired flights, bats exhibit Doppler-shift compensation with the same accuracy as when they fly alone. (3) In 60?% (n?=?29) of the cases, the difference in the reference frequency between two bats during paired flights significantly decreased compared to when the bats flew alone. However, only 15?% of the cases (n?=?7) showed a significant increase during paired flights. The difference in frequency between two bats did not increase even when the reference frequencies of the individuals were not statistically different during single flights.  相似文献   

19.
无尾蹄蝠的回声定位声波特征及分析   总被引:1,自引:0,他引:1  
采用超声波监听仪U30录制无尾蹄蝠自由飞行状态的回声定位声波,经Batsound3.0分析,其声波为高频(145.4±10.9kHz)、宽带(62.6±9.2kHz)、具两个谐波的短(1.67±0.4ms)FM型,不同于蹄蝠科其他蝙蝠的CF型,表明该科内物种声波类型存在多态性。头骨的形态测定分析支持其通过鼻腔发射声波,与蹄蝠科其他蝙蝠一致,表明该科内声波发射方式的单一性。适应环境的选择压力及翼型和声波的适应性可能是其选择FM型叫声的重要原因。  相似文献   

20.
Bats are among the few predators that can exploit the large quantities of aerial insects active at night. They do this by using echolocation to detect, localize, and classify targets in the dark. Echolocation calls are shaped by natural selection to match ecological challenges. For example, bats flying in open habitats typically emit calls of long duration, with long pulse intervals, shallow frequency modulation, and containing low frequencies-all these are adaptations for long-range detection. As obstacles or prey are approached, call structure changes in predictable ways for several reasons: calls become shorter, thereby reducing overlap between pulse and echo, and calls change in shape in ways that minimize localization errors. At the same time, such changes are believed to support recognition of objects. Echolocation and flight are closely synchronized: we have monitored both features simultaneously by using stereo photogrammetry and videogrammetry, and by acoustic tracking of flight paths. These methods have allowed us to quantify the intensity of signals used by free-living bats, and illustrate systematic changes in signal design in relation to obstacle proximity. We show how signals emitted by aerial feeding bats can be among the most intense airborne sounds in nature. Wideband ambiguity functions developed in the processing of signals produce two-dimensional functions showing trade-offs between resolution of time and velocity, and illustrate costs and benefits associated with Doppler sensitivity and range resolution in echolocation. Remarkably, bats that emit broadband calls can adjust signal design so that Doppler-related overestimation of range compensates for underestimation of range caused by the bat's movement in flight. We show the potential of our methods for understanding interactions between echolocating bats and those prey that have evolved ears that detect bat calls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号