首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypocretins (orexins) are recently discovered hypothalamic neuropeptides that have been implicated in the etiology of narcolepsy. The normal behavioral functions of these peptides are unclear, although a role in feeding has been suggested. We measured hypocretin-1 (Hcrt-1) in the cerebrospinal fluid of dogs during a variety of behaviors. We found that 48 h without food (24 h beyond normal 24-h fasting period) produced no significant change in Hcrt-1 levels nor did feeding after the deprivation. In contrast, 24 h of sleep deprivation produced on average a 70% increase in Hcrt-1 level compared with baseline levels. The amount of increase was correlated with the level of motor activity during the sleep-deprivation procedure. A 2-h period of exercise in the same dogs produced a 57% increase in Hcrt-1 levels relative to quiet waking levels, with the magnitude of the increase being highly correlated with the level of motor activity. The strong correlation between motor activity and Hcrt-1 release may explain some of the previously reported behavioral, physiological, and pathological phenomena ascribed to the Hcrt system.  相似文献   

2.
The neuropeptides hypocretins (orexins), the loss of which results in the sleep disorder narcolepsy, are hypothesized to be involved in the consolidation of wakefulness and have been proposed to be part of the circadian-driven alertness signal. To elucidate the role of hypocretins in the consolidation of human wakefulness we examined the effect of wake extension on hypocretin-1 in squirrel monkeys, primates that consolidate wakefulness during the daytime as do humans. Wake was extended up to 7 h with hypocretin-1, cortisol, ghrelin, leptin, locomotion, and feeding, all being assayed. Hypocretin-1 (P < 0.01), cortisol (P < 0.001), and locomotion (P < 0.005) all increased with sleep deprivation, while ghrelin (P = 0.79) and leptin (P = 1.00) did not change with sleep deprivation. Using cross-correlation and multivariate modeling of these potential covariates along with homeostatic pressure (a measure of time awake/asleep), we found that time of day and homeostatic pressure together explained 44% of the variance in the hypocretin-1 data (P < 0.001), while cortisol did not significantly contribute to the overall hypocretin-1 variance. Locomotion during the daytime, but not during the nighttime, helped explain < 5% of the hypocretin-1 variance (P < 0.05). These data are consistent with earlier evidence indicating that in the squirrel monkey hypocretin-1 is mainly regulated by circadian inputs and homeostatic sleep pressure. Concomitants of wakefulness that affect hypocretin-1 in polyphasic species, such as locomotion, food intake, and food deprivation, likely have a more minor role in monophasic species, such as humans.  相似文献   

3.
The hypocretins (also called the orexins) are two neuropeptides derived from the same precursor whose expression is restricted to a few thousand neurons of the lateral hypothalamus. Two G-protein coupled receptors for the hypocretins have been identified, and these show different distributions within the central nervous system and differential affinities for the two hypocretins. Hypocretin fibers project throughout the brain, including several areas implicated in regulation of the sleep/wakefulness cycle. Central administration of synthetic hypocretin-1 affects blood pressure, hormone secretion and locomotor activity, and increases wakefulness while suppressing rapid eye movement sleep. Most human patients with narcolepsy have greatly reduced levels of hypocretin peptides in their cerebral spinal fluid and no or barely detectable hypocretin-containing neurons in their hypothalamus. Multiple lines of evidence suggest that the hypocretinergic system integrates homeostatic, metabolic and limbic information and provides a coherent output that results in stability of the states of vigilance.  相似文献   

4.
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8).We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus.In addition, compared to control, disturbances of the sleep–wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions.In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.  相似文献   

5.
To investigate the effects of short-term sleep deprivation on the sleep pattern during pregnancy, cortical and hippocampal EEG and locomotor activity were recorded within 24-hours in a "disk-over-water" paradigm in 18 Wistar rats. Rats were adapted to experimental situation and were able to move across the rotating disk without falling in water. Then a polysomnogram was recorded for 3 sequential days in the control group 1 (n = 12) without disk rotation. On the next day non-pregnant rats (experimental group 1, n = 6) were subjected to the sleep deprivation procedure with a pre-set program of disk rotation from 11:00 to 14:00 during 3 sequential days. Other 6 rats (experimental group 2) were subjected to sleep deprivation on the 5-7th day of pregnancy. EEG and locomotor activity were also constantly recorded during the sleep deprivation procedure. In control group 2 (n = 6, without sleep deprivation), a polysomnogram was recorded on the 5-7th day of pregnancy. As compared to non-pregnant rats, sleep intensity of pregnant rats increased during the first hours after the deprivation, and a considerable rebound of REM sleep took place. Sleep pattern during the off-light 12 hours remained unchanged. The results suggest that homeostatic compensation of sleep deprivation effects in rats on the first week of pregnancy is more efficient than in control non-pregnant animals.  相似文献   

6.
The authors present here mathematical models in which levels of subjective alertness and cognitive throughput are predicted by three components that interact with one another in a nonlinear manner. These components are (1) a homeostatic component (H) that falls in a sigmoidal manner during wake and rises in a saturating exponential manner at a rate that is determined by circadian phase during sleep; (2) a circadian component (C) that is a function of the output of our mathematical model of the effect of light on the circadian pacemaker, with the amplitude further regulated by the level of H; and (3) a sleep inertia component (W) that rises in a saturating exponential manner after waketime. The authors first construct initial models of subjective alertness and cognitive throughput based on the results of sleep inertia studies, sleep deprivation studies initiated across all circadian phases, 28-h forced desynchrony studies, and alertness and performance dose response curves to sleep. These initial models are then refined using data from nearly one hundred fifty 30- to 50-h sleep deprivation studies in which subjects woke at their habitual times. The interactive three-component models presented here are able to predict even the fine details of neurobehavioral data from sleep deprivation studies and, after further validation, may provide a powerful tool for the design of safe shift work and travel schedules, including those in which people are exposed to unusual patterns of light.  相似文献   

7.
Sleep homeostasis and models of sleep regulation   总被引:17,自引:0,他引:17  
According to the two-process model of sleep regulation, the timing and structure of sleep are determined by the interaction of a homeostatic and a circadian process. The original qualitative model was elaborated to quantitative versions that included the ultradian dynamics of sleep in relation to the non-REM-REM sleep cycle. The time course of EEG slow-wave activity, the major marker of non-REM sleep homeostasis, as well as daytime alertness were simulated successfully for a considerable number of experimental protocols. They include sleep after partial sleep deprivation and daytime napping, sleep in habitual short and long sleepers, and alertness in a forced desynchrony protocol or during an extended photoperiod. Simulations revealed that internal desynchronization can be obtained for different shapes of the thresholds. New developments include the analysis of the waking EEG to delineate homeostatic and circadian processes, studies of REM sleep homeostasis, and recent evidence for local, use-dependent sleep processes. Moreover, nonlinear interactions between homeostatic and circadian processes were identified. In the past two decades, models have contributed considerably to conceptualizing and analyzing the major processes underlying sleep regulation, and they are likely to play an important role in future advances in the field.  相似文献   

8.
Anxiety and depressive symptoms are generated after paradoxical sleep deprivation (PSD). However, it is not clear whether PSD produces differential effects between females and males. The aim of this study was to assess the effect of PSD on anxiety- and depressive-like behaviors between sexes. Male and female BALB/c mice were divided in three groups: the control group, the 48-h PSD group and the 96-h PSD group. Immediately after PSD protocols, the forced swimming and open field test were applied. Sucrose consumption test was used to evaluate the middle-term effect of PSD. We found that corticosterone serum levels showed significant differences in the 96-h PSD females as compared to 96-h PSD males. In the open-field test, the 48-h and 96-h PSD females spent more time at the periphery of the field, and showed high locomotion as compared to males. In the elevated plus maze, the 48-h PSD females spent more time in closed arms than males, which is compatible with anxiety-like behavior. The forced swim test indicated that the 96-h PSD males spent more time swimming as compared to the 96-h PSD females. Remarkably, the 96-h PSD males had lower sucrose intake than the 96-h PSD females, which suggest that male mice have proclivity to develop a persistent depressive-like behavior late after PSD. In conclusion, male mice showed a significant trend to depressive-like behaviors late after sleep deprivation. Conversely, female have a strong tendency to display anxiety- and depressive-like behaviors immediately after sleep deprivation.  相似文献   

9.
To asses the influence of photoperiod on sleep regulation EEG, EMG, and cortical temperature were continuously recorded for two baseline days and after 4 h sleep deprivation in Djungarian hamsters (Phodopus sungorus) adapted to a short photoperiod (light dark 816). Comparison to previous data collected in a long photoperiod (lightdark 168) showed several major effects of photoperiod: 1. A prominent change in the 24-h distribution, duration and number of vigilance state episodes, whereas the total amount of sleep and waking was unchanged; 2. Cortical temperature was 0.7°C lower in the short photoperiod; 3. There was a significant negative correlation between cortical temperature and the frequency of REM sleep episodes; and 4. Absolute EEG power density showed a marked reduction in the short photoperiod. After sleep deprivation EEG slow-wave activity (mean power density 0.75–4.0 Hz) in NREM sleep showed a remarkably similar increase in both photoperiods demonstrating the robustness of the homeostatic regulation of sleep. Cortical temperature remained above baseline values after sleep deprivation in the short photoperiod whereas a negative rebound was present in the long photoperiod. Our results support the hypothesis that cortical temperature has a strong influence on REM sleep propensity and indicate the possibility of an optimum cortical temperature for recovery sleep after sleep deprivation. The lower EEG power density in the short photoperiod may contribute to energy conservation.Abbreviations LP long photoperiod - NREM non-rapid-eye-movement - REM rapid-eye-movement - SCN suprachiasmatic nucleus - SD sleep deprivation - SP short photoperiod - SWA slow-wave activity - T CRT cortical temperature  相似文献   

10.
After REM sleep deprivation the time-course of the forced swimming was reorganized. As shown, reduction of rhythmical index of depression, such effect has an antidepressive nature. In this model potentiation of specific activity of antidepressant imipramine and attenuation of depressive properties of clonidine were observed. These results suggest that shifts in sleep phase structure may be a source of restriction of circadian desynchronosis, upon which depression is based.  相似文献   

11.
The hypocretin/orexin neuropeptides (hcrt) are key players in the control of sleep and wakefulness evidenced by the fact that lack of hcrt leads to the sleep disorder Narcolepsy Type 1. Sleep disturbances are common in mood disorders, and hcrt has been suggested to be poorly regulated in depressed subjects. To study seasonal variation in hcrt levels, we obtained data on hcrt-1 levels in the cerebrospinal fluid (CSF) from 227 human individuals evaluated for central hypersomnias at a Danish sleep center. The samples were taken over a 4 year timespan, and obtained in the morning hours, thus avoiding impact of the diurnal hcrt variation. Hcrt-1 concentration was determined in a standardized radioimmunoassay. Using biometric data and sleep parameters, a multivariate regression analysis was performed. We found that the average monthly CSF hcrt-1 levels varied significantly across the seasons following a sine wave with its peak in the summer (June—July). The amplitude was 19.9 pg hcrt/mL [12.8–26.9] corresponding to a 10.6% increase in midsummer compared to winter. Factors found to significantly predict the hcrt-1 values were day length, presence of snow, and proximity to the Christmas holiday season. The hcrt-1 values from January were much higher than predicted from the model, suggestive of additional factors influencing the CSF hcrt-1 levels such as social interaction. This study provides evidence that human CSF hcrt-1 levels vary with season, correlating with day length. This finding could have implications for the understanding of winter tiredness, fatigue, and seasonal affective disorder. This is the first time a seasonal variation of hcrt-1 levels has been shown, demonstrating that the hcrt system is, like other neurotransmitter systems, subjected to long term modulation.  相似文献   

12.
We hypothesized that nitric oxide (NO) may play a role in homeostatic sleep regulation. To test this hypothesis, we studied the sleep deprivation (SD)-induced homeostatic sleep responses after intraperitoneal administration of an NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, a cumulative dose of 100 mg/kg). Amounts and intensity of sleep were increased in response to 8 h of SD in control rats (n = 8). Sleep amounts remained above baseline for 16 h after SD followed by a negative rebound. Rapid eye movement sleep (REMS) and non-REMS (NREMS) intensities were elevated for 16 and 4 h, respectively. L-NAME treatment (n = 8) suppressed the rebound increases in NREMS amount and intensity. REMS rebound was attenuated by L-NAME in the first dark period after SD; however, a second rebound appeared in the subsequent dark period. REMS intensity did not increase after SD in L-NAME-injected rats. The finding that the NO synthase inhibitor suppressed rebound increases in NREMS suggests that NO may play a role as a signaling molecule in homeostatic regulation of NREMS.  相似文献   

13.
A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72 h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them.  相似文献   

14.
目的:探讨丁苯酞对慢性睡眠剥夺后大鼠脑部额叶小胶质细胞活化及炎症因子的影响。方法:本实验共分为4组(n=8):空白对照组、大平台对照组、慢性睡眠剥夺组、丁苯酞干预组。慢性睡眠剥夺组和丁苯酞干预组采用改良多平台睡眠剥夺法建立大鼠慢性睡眠剥夺模型,对大鼠进行每日18 h,连续28 d的睡眠剥夺。在这28d内,空白对照组大鼠不进行睡眠干预,大平台对照组大鼠放于大平台箱内。丁苯酞干预组在睡眠剥夺28 d结束后按100 mg/kg腹腔注射丁苯酞针剂,每日1次,共14 d,其他组大鼠在这14 d内腹腔注射同样剂量的生理盐水。腹腔注射结束后各组大鼠取脑组织,免疫组化检测额叶皮质离子钙接头分子(Iba-1)阳性细胞并计数,Western blot检测额叶诱导型一氧化氮合成酶(iNOS)、精氨酸酶1(Arg1)表达,实时定量PCR检测额叶白介素-1(IL-1) mRNA、IL-6 mRNA、肿瘤坏死因子-α(TNF-α) mRNA。结果:与空白对照组、大平台对照组比较,慢性睡眠剥夺组额叶Iba-1阳性细胞体积增大伴细胞突起增多,且细胞数增加(P均<0.05),iNOS和IL-1 mRNA、IL-6...  相似文献   

15.
After REM sleep deprivation antidepressant shifts in forced swimming with increase of time of immobility and decrease of rhythmical index of depression were observed. Pinealectomy did not remove, but attenuated these behavioural changes.  相似文献   

16.
Seven subjects exercised to thermal comfort in a cold environment (O degrees C, 2.5 m X s-1) after normal sleep (control) and following a 50-h period of sleep deprivation. Resting core temperature (rectal) taken before the subject entered the cold environment was significantly lower (-0.5 degrees C, P less than 0.05) following the 50-h period of wakefulness. However, rectal temperature was not different after 15 min of exercise during the two exposures, suggesting that the subjects stored heat more rapidly during the first 15 min of exercise after sleep deprivation. No significant differences in self-chosen exercise intensity, significant differences in self-chosen exercise intensity, heart rate, metabolic rate, or exercise time were evident between the control and sleep deprived exposures. Fifty hours of sleep deprivation failed to alter the core temperature response during exercise in severe cold stress, and subjects chose identical work rates to minimize fatigue and cold sensation. The results suggest that the 50-h sleep deprivation period was not a true physiological stress during exercise in a cold environment. (Supported by Contract #DAMD 17-81-C1023.)  相似文献   

17.
18.
19.
Cognitive processes are crucial for human performance. Basic cognitive processes, such as attention, working memory, and executive functions, show homeostatic (time awake, sleep deprivation) and circadian (time of day) variations. Each of these cognitive processes includes several components, which contribute sequentially to the homeostatic and circadian modulation of performance. Sudden (lapses) and gradual changes in cognitive performance occur with sleep deprivation or with time of day. The time course of human cognitive processes throughout the day is relevant to the programming of different human activities. The lowest level of cognitive performance occurs during nighttime and early in the morning, a better level occurs around noon, and even higher levels occur during afternoon and evening hours. However, this time course can be modulated by conditions such as chronotype, sleep deprivation, sleep disorders or medication that affects the central nervous system.  相似文献   

20.
The study deals with activity of three antioxidant enzymes, copper, zinc-superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT) in hippocampus of rats, following the exposure to single chronic (individual housing or forced swimming) and acute (immobilization or cold) stress, as well as to combined chronic/acute stress. In addition, plasma noradrenaline (NA) and adrenaline (A) concentrations were measured in the same stress conditions, because their autooxidation can add to the oxidative stress. We observed that i) long-term social isolation and repeated forced swimming had minor effects on plasma catecholamines, but in the long-term pretreated groups, acute stressors caused profound elevation NA and A levels, ii) chronic stressors activate antioxidant enzymes, iii) acute stressors decrease catalase activity, their effects on CuZnSOD appear to be stressor-dependent, whereas MnSOD is not affected by acute stressors, and iv) pre-exposure to chronic stress affects the antioxidant-related effects of acute stressors, but this effect depends to a large extent on the type of the chronic stressor. Based on both metabolic and neuroendocrine data, long-term isolation appears to be a robust psychological stressor and to induce a "priming" effect specifically on the CuZnSOD and CAT activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号