首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed a rapid method for isolation of the Photosystem I (PS1) complex from Chlamydomonas reinhardtii using epitope tagging. Six histidine residues were genetically added to the N-terminus of the PsaA core subunit of PS1. The His6-tagged PS1 could be purified with a yield of 80–90% from detergent-solubilized thylakoid membranes within 3 h in a single step using a Ni-nitrilotriacetic acid (Ni-NTA) column. Immunoblots and low-temperature fluorescence analysis indicated that the His6-tagged PS1 preparation was highly pure and extremely low in uncoupled pigments. Moreover, the introduced tag appeared to have no adverse effect upon PS1 structure/function, as judged by photochemical assays and EPR spectroscopy of isolated particles, as well as photosynthetic growth tests of the tagged strain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
cDNA clones encoding two Photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses of 18 and 11 kDa (thylakoid polypeptides 21 and 30; P21 and P30 respectively) were isolated using oligonucleotides, the sequences of which were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that both proteins are encoded by single-copy genes. The mRNA sizes of the two components are 1400 and 740 nucleotides, respectively. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the molecular masses of the mature proteins are 17.9 (P21) and 8.1 kDa (P30). Analysis of the deduced protein sequences predicts that both subunits are extrinsic membrane proteins with net positive charges. The amino acid sequences of the transit peptides suggest that P21 and P30 are routed towards the lumenal and stromal sides of the thylakoid membranes, respectively.Abbreviations OEE1, 2 and 3 oxygen evolution enhancer proteins 1, 2 and 3 - Rubisco ribulose bisphosphate carboxylase/oxygenase - PS photosystem - P21 and P30 C. reinhardtii thylakoid polypeptides 21 and 30  相似文献   

3.
In this Review we focus on the conversion of linear photosynthetic electron transport from water to NADP to the cyclic pathway around Photosystem I in the green alga Chlamydomonas reinhardtii. We discuss the strict relationship that exists between the changes in pathways of electron transport and state transitions, i.e., the reversible functional association of light harvesting proteins with one of the two photosystems of oxygenic photosynthesis. Such a link has not been reported in the case of other photosynthetic organisms, where the state transitions do not affect the pathway of electron transport. Rather, they provide a tool to optimise the rate of linear flow. We propose a kinetic-structural model that explains the mechanism of this particular relationship in Chlamydomonas, and discuss the advantages that this peculiar situation gives to the energetic metabolism of this alga. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The photoacoustic technique was used to measure energy storage by cyclic electron transfer around photosystem I in intact Chlamydomonas reinhardtii cells illuminated with far-red light (>715 nm). The in-vivo cyclic pathway was characterized by investigating the effects of various chemicals on energy storage. Participation of plastoquinone and ferredoxin in the cyclic electron flow was confirmed by the complete suppression of energy storage in the presence of the plastoquinol antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the ferredoxin inhibitors/competitors methylviologen, phenylmercuric acetate and p-benzoquinone. Two alternative electron cycles are demonstrated to operate in vivo. One cycle is sensitive to antimycin A, myxothiazol and 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) and is catalyzed by ferredoxin which reduces plastoquinone through a route involving cytochrome b 6 and its protonmotive Q-cycle. The other cycle is unaffected by the above-mentioned inhibitors but is sensitive to N-ethylmaleimide (NEM), an inhibitor of the ferredoxin-NADP reductase, and 2-monophosphoadenosine-5-diphosphoribose (PADR), an analogue of NADP, showing that the electron recycling was mediated by NADPH. Possibly, electrons enter the plastoquinone pool through the action of a NAD(P)H dehydrogenase, which is insensitive to classical inhibitors of the mitochondrial NADH dehydrogenase. Loss of energy storage by photosystem-I-driven cyclic electron transfer in farred light was observed only when antimycin A, myxothiazol or HQNO was used in combination with NEM or PADR. Analysis of the light-intensity dependence and the rate of in-vivo cyclic electron transfer in the presence of various inhibitors indicates that the NADPH-dependent electron-cycle is the preferential cyclic pathway in Chlamydomonas cells illuminated with far-red light.Abbreviations Amax maximal photothermal signal - Cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ES photochemical energy storage - FNR ferredoxin NADP+ reductase - HQNO 2-(n-heptyl)-4-hydroxyquinoline N-oxide - NEM N-ethylmaleimide - P700 reaction-center pigment of PSI - PADR 2-monophosphoadenosine-5-diphosphoribose - pBQ p-benzoquinone - PMA phenylmercuric acetate We are very grateful to Dr. M.-H. Montane (Cadarache, Saint-Paul-lez-Durance, France) for her advice in the electroporation experiments.  相似文献   

5.
Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii ΔpetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii ΔpetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of C. reinhardtii wild type. However, the C. reinhardtii petA transformants accumulated lower levels of cytochrome b 6 /f complexes and exhibited lower light saturated rates of O2 evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability to adaptation to cold environments. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP+ reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.Abbreviations AQS 9,10-anthraquinone-2-sulphonate - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - dimaleimide N,N-p-phenylenedimaleimide - EDC N-(dimethylaminopropyl)-N-ethylcarbodiimide - Fd ferredoxin - FNR Fd-NADP+ oxidoreductase - FQR Fd-PQ reductase - GME glycine methyl ester - J820 tetrabromo-4-hydroxypyridine - PC plastocyanin - PMS N-methylphenazinium methyl sulphate - PS Photosystems I and II - PQ plastoquinone - Q quinone - Qr and Qo sites of quinone reduction and oxidation, respectively - sulpho-DSPD disulphodisalicylidenepropane-1,2-diamine  相似文献   

7.
Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and poises the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DCHC dicyclohexyl-18-crown-6 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP carbonylcyanide 4-(trifluoromethoxy) phenylhydrazone - LHC light harvesting chlorophyll - LHCP II light harvesting chlorophyll protein of Photosystem II - PQ plastoquinone - PS I, II Photosystem I, II - SHAM salicyl hydroxamic acid - TBT Tri-n-butyltin CIW/DPB Publication No. 1146  相似文献   

8.
State transitions represent a photoacclimation process that regulates the light‐driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light‐harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI‐bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.  相似文献   

9.
Summary cDNA clones encoding three photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses 13, 5 and 3 kDa (thylakoid polypeptides 28, 35 and 37; P28, P35 and P37, respectively) were isolated using gene specific oligonucleotides as probes. The sequences of these oligonucleotides were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that the proteins are encoded by single-copy genes. The mRNA sizes of the three components are 960 (P28), 1120 (P35) and 790 (P37) nucleotides. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the nascent polypeptides possess N-terminal transit sequences that are removed to give mature proteins of 11.0 (P28), 10.0 (P35) and 8.4 (P37) kDa. Analysis of the deduced protein sequences suggests that P28 and P35 are extrinsic membrane proteins and that P37 spans the thylakoid membrane. All three proteins have short transit peptides that probably route them to the stromal side of the thylakoid membrane.Abbreviations OEE1, 2 and 3 oxygen evolution enhancer proteins 1, 2 and 3 - RuBisCO ribulose bisphosphate carboxylase/oxygenase - PS photosystem - P28, P35 and P37 Chlamydomonas reinhardtii thylakoid polypeptides 28, 35 and 37 The nucleotide sequences presented here will appear in the EMBL/Genbank/DDBJ Nucleotide Sequence Databases under the accession numbers X15164 (11.0 kDa subunit; P28), X15165 (10.0 kDa subunit; P35) and X15166 (8.4 kDa subunit; P37)  相似文献   

10.
The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day?1) and yield (60 μg chlorophyll/ml culture) than in pure cultures (0.4 day?1 and 10 μg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect.  相似文献   

11.
Summary In vitro protein synthesis was used to characterize the antibiotic sensitivity of cytoplasmic ribosomes from wild-type and antibiotic-resistant strains of Chlamydomonas reinhardtii. Cytoplasmic ribosomes from two cycloheximide-resistant mutants, act-1 and act-2, were resistant to the antibiotic in vitro. The alteration effected by the act-1 mutation, which was dominant in diploids, was localized to the large subunit of the cytoplasmic ribosomes, but no ribosomal protein alterations were detected using two-dimensional gel electrophoresis. The act-2 mutation, which was semidominant in diploids, was frequently associated with a charge alteration in the large subunit ribosomal protein (r-protein) cyL38 that segregated independently from the antibiotic-resistant phenotype in crosses.  相似文献   

12.
Gametes of Chlamydomonas reinhardtii synthesize numerous proteins not observed in vegetative cells and vice versa. Gametogenesis induced changes in gene expression were confirmed by SDS-PAGE of in vitro translation products using total RNA from gametes and vegetative cells. Vegetative cells and gametes thus represent two cell types with distinct patterns of gene expression. The generation of mature gametes from liquid cultures of asynchronously growing vegetative cells was dependent on light. This light requirement could not be substituted for by an organic source of energy and carbon, indicating that light serves as a signal in gametogenesis. The light signal was shown to become effective only after preincubation in nitrogen-free medium. This delayed competence for light indicates that the two external signals — nitrogen-starvation and light —may function in sequence. Execution of the light dependent step in gamete formation required cytoplasmic protein synthesis and RNA synthesis.Abbreviations CAM chloramphenicol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSII photosystem II - TAP Tris acetate phosphate - TMP Tris minimal phosphate This paper is dedicated by C. F. Beck to Professor John L. Ingraham, teacher and friend, on the occasion of his 65th birthday  相似文献   

13.
Photosystem I-driven cyclic electron transport was measured in intact cells of Synechococcus sp PCC 7942 grown under different light intensities using photoacoustic and spectroscopic methods. The light-saturated capacity for PS I cyclic electron transport increased relative to chlorophyll concentration, PS I concentration, and linear electron transport capacity as growth light intensity was raised. In cells grown under moderate to high light intensity, PS I cyclic electron transport was nearly insensitive to methyl viologen, indicating that the cyclic electron supply to PS I derived almost exclusively from a thylakoid dehydrogenase. In cells grown under low light intensity, PS I cyclic electron transport was partially inhibited by methyl viologen, indicating that part of the cyclic electron supply to PS I derived directly from ferredoxin. It is proposed that the increased PSI cyclic electron transport observed in cells grown under high light intensity is a response to chronic photoinhibition.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ES energy storage - MV methyl viologen - PAm photoacoustic thermal signal with strong non-modulated background light added - PAs photoacoustic thermal signal without background light added CIW/DPB Publication No. 1205.  相似文献   

14.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

15.
A proteomic approach including two-dimensional electrophoresis and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas reinhardtii. We first described the partial 2D-picture of soluble proteome obtained from whole cells grown on acetate. Then we studied the effects of the exposure of these cells to 150 μM cadmium (Cd). The most drastic effect was the decrease in abundance of both large and small subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase, in correlation with several other enzymes involved in photosynthesis, Calvin cycle and chlorophyll biosynthesis. Other down-regulated processes were fatty acid biosynthesis, aminoacid and protein biosynthesis. On the other hand, proteins involved in glutathione synthesis, ATP metabolism, response to oxidative stress and protein folding were up-regulated in the presence of cadmium. In addition, we observed that most of the cadmium-sensitive proteins were also regulated via two major cellular thiol redox systems, thioredoxin and glutaredoxin.  相似文献   

16.
Summary Experiments were undertaken to characterize the cytoplasmic ribosomal proteins (r-proteins) in Chlamydomonas reinhardtii and to compare immunologically several cytoplasmic r-proteins with those of chloroplast ribosomes of this alga, Escherichia coli, and yeast. The large and small subunits of the C. reinhardtii cytoplasmic ribosomes were shown to contain, respectively, 48 and 45 r-proteins, with apparent molecular weights of 12,000–59,000. No cross-reactivity was seen between antisera made against cytoplasmic r-proteins of Chlamydomonas and chloroplast r-proteins, except in one case where an antiserum made against a large subunit r-protein cross-reacted with an r-protein of the small subunit of the chloroplast ribosome. Antisera made against one out of five small subunit r-proteins and three large subunit r-proteins recognized r-proteins from the yeast large subunit. Each of the yeast r-proteins has been previously identified as an rRNA binding protein. The antiserum to one large subunit r-protein cross-reacted with specific large subunit r-proteins from yeast and E. coli.  相似文献   

17.
Energy trapping in Photosystem I (PS I) was studied by time-resolved fluorescence spectroscopy of PS II-deleted Chl b-minus thylakoid membranes isolated from site-directed mutants of Chlamydomonas reinhardtii with specific amino acid substitutions of a histidine ligand to P700. In vivo the fluorescence of the PS I core antenna in mutant thylakoids with His-656 of PsaB replaced by asparagine, serine or phenylalanine is characterized by an increase in the lifetime of the fast decay component ascribed to the energy trapping in PS I (25 ps in wild type PS I with intact histidine-656, 50 ps in the mutant PS I with asparagine-656 and 70 ps in the mutant PS I with phenylalanine-656). Assuming that the excitation dynamics in the PS I antenna are trap-limited, the increase in the trapping time suggests a decrease in the primary charge separation rate. Western blot analysis showed that the mutants accumulate significantly less PS I than wild type. Spectroscopically, the mutations lead to a decrease in relative quantum yield of the trapping in the PS I core and increase in relative quantum yield of the fluorescence decay phase ascribed to uncoupled chlorophyll–protein complexes which suggests that improper assembly of PS I and LHC in the mutant thylakoids may result in energy uncoupling in PS I.  相似文献   

18.
The 77 K picosecond fluorescence of intact Chlamydomonas reinhardtii exhibits a 680-nm band (F680) that can be identified with light-harvesting chlorophyll. Analysis of the time and spectral dependence of F680 reveal a forward transfer rate of 1/(15 ps) from this 680-nm species to photosystem II. The possibility of transfer through LHC I, the light-harvesting complex closely associated with photosystem I with a transfer time of 60 to 100 ps, is indicated by analysis of similar data in the 700–720 nm region. Simple kinetic models that account for the time dependence of the emissions F707, F703 and F715 are proposed.Based in part on a thesis submitted in partial fulfillment of the requirements for the Ph.D. Degree, University of Rochester (SL).  相似文献   

19.
The photosystem II activity and energy dissipation was investigated when algal Chlamydomonas reinhardtii genotypes were exposed to dichromate toxicity effect. The exposure during 24 h to dichromate effect of two C. reinhardtii mutants having non-functional xanthophylls cycle, as npq1 zeaxanthin deficient and npq2 zeaxanthin accumulating, induced inhibition of PSII electron transport. After dichromate-induced toxicity, PSII functions of C. reinhardtii mutants were investigated under different light intensities. To determine dichromate toxicity and light intensity effect on PSII functional properties we investigated the change of energy dissipation via PSII electron transport, non-photochemical regulated and non-regulated energy dissipation according to Kramer et al. (Photosynth Res 79:209–218, 2004). We showed the dependency between dichromate toxicity and light-induced photoinhibition in algae deficient in xanthophyll cycle. When algal mutants missing xanthophylls cycle were exposed to dichromate toxicity and to high light intensity energy dissipation via non-regulated mechanism takes the most important pathway reaching the value of 80%. Therefore, the mutants npq1 and npq2 having non-functional xanthophylls cycle were more sensitive to dichromate toxic effects.  相似文献   

20.
Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号