首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The texture of the upper surface of the thallus and its relationshipto certain aspects of water relations were studied in 20 lichentaxa of the family Umbilicariaceae. The anatomy and thicknessof the upper cortex were studied by light microscopy of transversesections and the texture of the upper surface of the thalluswas observed by scanning electron microscopy. The hygroscopicfeatures of the upper surface of the thallus were measured with20 µl drops of a water-soluble ink. Both the maximum surfacearea covered by the absorbed drop and the time elapsed untilits complete absorption were recorded. The degree of wettabilitywas closely related to surface texture but not to cortical thickness.The lichens which possessed the most hygroscopic upper surface(in some cases more so than the filter paper) were those specieswhich usually obtain water as vapour from the air, whereas thosespecies dependent on the substrate for their water had a relativelyimpermeable upper surface.Copyright 1994, 1999 Academic Press Umbilicariaceae, upper surface texture, hygroscopic features, water relations  相似文献   

2.
Certain lichens of the genus Cladonia are effective heavy-metal-tolerant colonisers of strongly contaminated and disturbed sites. Among them, Cladonia cariosa, Cladonia pyxidata and Cladonia rei are the major components of specific cryptogamic assemblages proven to be bioindicators of soil pollution. This study examines the bioaccumulation capacity and heavy metal accumulation pattern of these species in the context of element concentration levels in various parts of their thalli at various vertical distances from the ground. The content of Zn, Pb, Cd, As and Cu in primary squamules, lower and upper parts of secondary thalli (podetia), and fruiting bodies (apothecia), as well as the corresponding substrate, was analysed using the AAS method. The substrate turned out to be the main source of heavy metals in the examined Cladonia lichens. Element accumulation in particular parts of thalli greatly depends on metal enrichment in the immediate vicinity while Cu/Zn ratios for both substrate and lichen samples were very low and comparable within the species. Concentration levels in thalli usually decrease significantly with distance from the substrate. The exception is copper, which content was frequently higher in apothecia than in the upper parts of podetia. Low bioaccumulation factors calculated for the examined Cladonia specimens classified these lichens as weak accumulators of heavy metals. Even given an extremely high level of contaminants in the substrate, the upper parts of thalli are not greatly affected. Consequently, fruticose and erect growth form, in combination with low accumulation capacity and a remarkable decrease in metal content along a vertical gradient, may be an important attribute of Cladonia lichens in the colonisation of a highly contaminated substrate. The content of elements differs significantly between particular parts of Cladonia thalli; this should be taken into account whenever burdens of heavy metals are used as indicators in biomonitoring studies.  相似文献   

3.
Organic and inorganic nitrogen uptake in lichens   总被引:8,自引:0,他引:8  
Dahlman L  Persson J  Palmqvist K  Näsholm T 《Planta》2004,219(3):459-467
In order to learn more about nitrogen (N) acquisition in lichens, and to see whether different lichens differ in their affinity to various N sources, N uptake was measured in 14 various lichen associations (species). These species represented various morphologies (fruticose or foliose), contrasting microhabitat preferences (epiphytic or terricolous), and had green algal, cyanobacterial or both forms of photobionts. N was supplied under non-limiting conditions as an amino acid mixture, ammonium, or nitrate, using 15N to quantify uptake. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used to separate active and passive uptake. Thallus N, amino acids, soluble polyol concentrations, and the biont-specific markers chlorophyll a and ergosterol were quantified, aiming to test if these metabolites or markers were correlated with N uptake capacity. Ammonium uptake was significantly greater and to a higher extent passive, relative to the other two N sources. Nitrate uptake differed among lichen photobiont groups, cyanobacterial lichens having a lower uptake rate. All lichens had the capacity to assimilate amino acids, in many species at rates equal to nitrate uptake or even higher, suggesting that organic N compounds could potentially have an important role in the N nutrition of these organisms. There were no clear correlations between N uptake rates and any of the measured metabolites or markers. The relative uptake rates of ammonium, nitrate and amino acids were not related to morphology or microhabitat.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazone - Chl Chlorophyll - N Nitrogen  相似文献   

4.
Potential alteration of precipitation chemistry by epiphytic lichens   总被引:5,自引:0,他引:5  
Summary Epiphytic lichen growth is abundant on the boles and branches of balsam fir trees at high elevations in New Hampshire. These lichens absorb elements needed for growth from solutions flowing over their surfaces and from direct impaction of water droplets. This study describes how epiphytic lichens and fir needles altered the chemistry of simulated rain water solutions under laboratory conditions. Experiments showed: 1) lichens absorbed ammonium and nitrate from solution; the rate of uptake increased with increasing temperature of the solution, 2) lichens lost calcium, magnesium, and hydrogen to the solution, 3) lichen thalli also initially lost potassium, but in time, net movement was reversed back into the thallus, 4) cation movement increased with increasing temperature, and 5) fir needles responded in a manner similar to that of the lichens, but the amount of change was much less. From these results it seems that epiphytic lichens have potential ecological importance in altering the chemistry of throughfall and stemflow.  相似文献   

5.
The extent of vertical migration of 33P in thalli of the heathland lichen Cladonia portentosa was investigated under field conditions. 33P-labelled orthophosphate was introduced into the bottom 25 mm of podetia cut to a length of 50 mm from the apices. The distribution of label was scanned using a molecular imager immediately after incubation, and after growing for 8 wk and 6 months. Differences in the relative distribution of label between podetia harvested at the beginning and the end of the experiment showed that there had been a significant migration of 33P upwards out of the labelled 25 mm stratum towards the apex. This was confirmed by statistically significant changes in the median (md) and the 90 percentile of total relative distribution of 33P label. In a control treatment in which label was introduced into the apical 25 mm of podetia, which were then grown inverted (top down), no upward movement of label was detected. By contrast, a statistically significant reduction in the md of the distribution indicated migration downwards towards the thallus apex. The results are consistent with the hypothesis that P is recycled within podetia of mat-forming lichens, migrating from degrading basal regions upwards to the growing apices following a source–sink relationship.  相似文献   

6.
Experiments were conducted with leek (Allium porrum L.) leaves to investigate whether aqueous solutions are able to penetrate stomata. Epidermal strips were used for the determination of transport rates. Stomata were opened by fusicoccin or closed by darkness or abscisic acid. A droplet containing the anionic fluorescent dye, uranine, was placed on the physiologically outer side of the epidermis and allowed to dry. With open stomata 30 times more uranine penetrated through the epidermal strips than with closed stomata (comparison of medians). In another experiment droplets of uranine solution were placed on leaf segments and epidermal strips were removed after drying of the droplets. Penetration of uranine through stomata was detectable under the microscope both with epidermal strips from the transport experiments and with strips obtained after application on leaf segments. As maximum uptake rates occurred during the drying process, it is concluded that penetration took place via water films. These results show that the physical restrictions preventing stomatal penetration of static droplets are not decisive for drying droplets and that stomatal uptake of dissolved ionic substances occurs under natural conditions, i.e. without surfactants or applied pressure.  相似文献   

7.
The fluorescence yield at room temperature of the lichens Ramalina maciformis and Peltigera rufescens, containing either green or blue-green algae (Cyanobacteria) as phycobionts, has been investigated during rehydration of the dry lichens by water vapor uptake or by wetting with liquid water. In the dry state the fluorescence yield with all reaction centers open, Fo, was low and no variable fluorescence could be induced with both species. Whereas R. maciformis, containing green algae, regained normal fluorescence behavior during water vapor uptake, the photosynthetic apparatus of the blue-green algae-containing P. rufescens stayed inhibited and could be reactivated only by addition of liquid water. During stepwise rehydration at increasing air humidities, a pattern was established for the recovery of the different fluorescence parameters in R. maciformis. At a dry-weight related water content between 30 and 40%, Fo rose sharply. Maximal variable fluorescence yield expressed as (Fv)m/Fo, strongly increased in the same range of water content and remained constant above a water content of 50%. Non-photochemical fluorescence quenching, qNP, determined at the end of a period of actinic illumination, decreased with increasing water vapor uptake. While spraying the lichen with liquid water did not induce a further decrease of qNP, slow dehydration at lowered air humidity led to a minimal value of qNP at a water content of 65 % indicating optimal photosynthetic rate under these conditions. These results extend the conclusions drawn from earlier gas exchange experiments that blue-green algae-containing lichens are unable to reactivate photosynthesis by water vapor uptake. During a re- and de-hydration cycle, no hysteresis in the hydration dependence of the fluorescence parameters was found. From this and the presence of a stable and low Fo value at prolonged incubation in nearly water vapor saturated air, we conclude that the reactivation of photosynthesis in blue-green algae-containing lichens is not prevented through high diffusion resistances for water.  相似文献   

8.
Ion-exchange properties of cell walls were investigated in reindeer lichen Cladonia rangiferina (L.) F. H. Wigg. In order to isolate cell walls, we used living parts of podetia as well as young parts (four upper internodes of podetia) and old parts (from the 4th to the 8th internode). We studied functional dependences of cell wall ion-exchange capacity on pH in the range from 2 to 12 and constant ionic strength of solution equal to 10 mM. It was found that three-dimensional structure of C. rangiferina cell walls comprised three types of ionogenic groups, which determine ion-exchange properties of the cell walls. They are amino groups with pKa of about 3, carboxyl groups with pKa of about 7, and phenolic OH-groups with pKa of about 10. The content of groups of each type and their ionization constants were determined, and it was shown that, in the cell walls of young parts, the content of amino groups and carboxylic groups was greater than in old parts of podetia (by 1.5 and 2.0 times, respectively). It was found that with age the content of nitrogen and the proportion of deacetylated amino groups in the cell walls changed from 34% (young parts of podetia) to 40% (old parts of podetia). It was shown that in C. rangiferina N-acetyl glucosamine and glucosamine are not the main monomers of cell wall polymers because both in thalli and in the cell walls isolated therefrom the content of total nitrogen was less than 1%.  相似文献   

9.
Structural alterations of the photobiont and mycobiont cells of lichens have been related to CO2-gas exchange during experiments involving water vapour uptake and desiccation of liquid-water-saturated thalli. Increasing water vapour uptake of air dry lichens led to a gradual unfolding of the photobiont cells in Lobaria pulmonaria, Pseudevernia furfuracea, Ramalina maciformis and Teloschistes lacunosus as studied by low-temperature scanning electron microscopy. The data indicated that globular, probably turgid, cells and also slightly infolded or even heavily collapsed cells contributed to positive net photosynthesis, which was reached after water vapour uptake by the four species studied. During desiccation of fully water-saturated thalli of L. pulmonaria, extrathalline water films gradually evaporated before maximum values of CO2-gas exchange were measured and before photobiont cells started to shrivel. In contrast, in P. furfuracea the CO2-gas exchange maximum was reached when a considerable percentage of photobiont cells had already collapsed and while other parts of the thalli were still covered with liquid water. Further desiccation led to cavitation of the cortical cells in both species, this occurring at water contents at which net photosynthesis was still positive.Abbreviations EF exoplasmic fracture face - LTSEM low-temperature scanning electron microscopy - NP net photosynthesis - PAR photosynthetic active radiation (400–700 nm) - PF plasmic fracture face We thank D. Pichier, P. Hatvani, H. Müller, Birmensdorf, and J.B. Winkler, Kiel, for technical assistance, and J. Innes, Birmensdorf, for correcting the English text. Stimulating discussion with R. Honegger (Institut für Pflanzenbiologie, Universität Zürich, Switzerland), L. Kappen (Botanisches Institut, Universität Kiel, Germany), T.G.A. Green (Department of Biological Sciences, Hamilton, New Zealand), and O.L. Lange (Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany) are gratefully acknowledged.  相似文献   

10.
It is known from previous investigations that dry lichens with green algae are able to recover net photosynthesis through rehydration with water vapor, whereas all blue-green lichens tested so far lack this ability. The REM micrographs of the present study show that the green phycobionts (Trebouxia spec.) of Ramalina maciformis become turgid only after water vapor uptake. In contrast, the blue-green phycobionts (Nostoc spec.) of Peltigera rufescens do not differ in appearance from the dry state, even when the thallus has reached equilibrium with the water vapor-saturated air; they require liquid water for turgidity. It is hypothesized that, after humidity hydration, water content is not sufficient for reestablishment of a functioning osmotic cell system in the blue-green phycobiont.  相似文献   

11.
Aims: In order to gain more insight into the uptake modes of octadecane by bacteria. Methods and Results: A strain that could utilize octadecane well was isolated from crude oil contaminated soil, and named as Pseudomonas sp. DG17 by 16S rDNA analysis. Culture growth result showed that Pseudomonas sp. DG17 grew well in the addition of 200 and 400 mg l?1 of octadecane, which showed that physical contact between substrate and bacteria was important in the substrate biodegradation. Meanwhile, Pseudomonas sp. DG17 produced rhamnolipids biosurfactant that contains 10 congeners, thus causing the surface tension of the culture medium decline and facilitating the contact between hydrocarbon and bacteria. Scanning‐electron‐microscopy results showed that a disruption of the surface membranes in certain zones was observed in some of the cells grown in 400 mg l?1 octadecane at 176 h compared with the cells in exponential phase at 72 h due to the production of biosurfactant‐rhamnolipid. Conclusions: These results indicated the possibility that the direct contact with insoluble octadecane droplets occurred before the contact with pseudosolubilization smaller oil droplets. Significance: This report throws more light on the uptake mechanisms of octadecane by bacteria, and proposes the possibility that role of biosurfactant is to increase the contact between hydrocarbon and bacteria by changing the cell membrane structure which needs studied in depth. Impact of Study: Results of this study are useful in the bioremediation of petroleum polluted soil.  相似文献   

12.
L. Kappen 《Polar Biology》1985,4(4):227-236
Summary At Birthday Ridge, a small ice free area in northern Victoria Land (70°48S, 167°00E), cryptogamic vegetation is mostly confined to gaps between granitc rocks. The sheltering effect on lichens and mosses was analyzed by continuous measurements of the microclimate at various levels between the rocks. Although warming by solar radiation was favourable for the existence of cryptogams, rocks strongly insolated were mostly devoid of lichens and mosses. Lichens in the soaked active state were heated to above air temperature but did not reach more than 10°C. The presence of lichens was dependent on the moisture conditions of the habitat. It was observed that snow, the only source of moisture, accumulated in summer only in deeper levels between rocks, and that the snow rapidly melted on contact with the lichens. After a snow shower,Usnea sulphurea gained 67% andUmbilicaria decussata 94% of their maximum water capacity. During one quarter of the time period of 7 days the lichens were soaked and therefore capable of carrying out photosynthesis. The lichens in soaked state had always less than optimum temperatures for net photosynthesis. The rock gaps at Birthday Ridge form oases, the only localities where moisture is provided, and temperature is high enough to enable growth of lichens and mosses.Bryum is also able to exist in the upper 3 cm of soil.  相似文献   

13.
A dc gas discharge between copper electrodes in the current range of 5–20 А was studied experimentally. The discharge gap length was varied within 45–70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.  相似文献   

14.
In experiments with potted plants, the relationships between soil matric potential, plant water potential and production of water droplets (leaf surface wetness) on the folded central whorl leaf of seedlings of sorghum genotypes that are either resistant or susceptible to shoot fly (Atherigona soccata) damage were investigated. Differences in soil matric potentials in the pots affected the plant water status, which in turn had profound effects on the production of water droplets on the central whorl leaf of the sorghum genotype susceptible to shoot fly. There was no consistent variation in the relationship between plant water potential and soil matric potential of resistant and susceptible sorghum genotypes. However, there was very little or practically no water droplets on the central whorl leaf of the resistant genotypes, indicating that the production of water droplets is not solely the result of internal water status of the plant. It is suggested that leaf surface wetness is genetically controlled and that an understanding of the mechanism by which water is transferred to the leaf surface will enhance breeding for resistance to shoot fly.  相似文献   

15.
Translocation processes between the inner and outer rings of lichen thalli, as well as between lichens and bark substratum, induce zonation patterns, with a dynamic stratification of pollution history memory which is often affected by the intensity of the atmospheric events. Two experiments of passive biomonitoring are presented, aimed to measure metal concentrations and zonation patterns in lichens and bark, before and after raining events or after a water sprinkling treatment. Ten elements were monitored in the lichen Physcia biziana (Massal.) Zahlbr. v. leptophylla Ve?zda in a moderately polluted area of Campania region (Italy). Element concentrations changed with lichen age, with generally higher concentrations in the older than the younger tissues. Rain and sprinkling had differential effects on lichen and bark: a significant decrease of the overall concentrations was observed after rain in bark, whereas a slight increase was observed in lichen thalli; however, when lichen thalli were just rehydrated with a sprinkling treatment, some elements were found to increase in the younger portions of the thalli and decrease in the older portions. The extent to which zonation patterns account for site “pollution memory” or are affected by the short-term local atmospheric variability is discussed.  相似文献   

16.
When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by tissue rehydration and/or continued transpiration. The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut open when the leaf is excised. A paint perfusion method was used to estimate the length distribution of open vessels and this was compared with the observed distribution of embolisms by the cryo-SEM method. In the cryo-SEM method, petioles are frozen in liquid nitrogen soon after the petiole is cut. The petioles are then cut at different distances from the original cut surface while frozen and examined in a cryo-SEM facility, where it is easy to distinguish vessels filled with air from those filled with ice. The Scholander assumption was also confirmed by a hydraulic method, which avoided possible freezing artefacts. In petioles of sunflower (Helianthus annuus L) the distribution of embolized vessels agrees with expectations. This is in contrast to a previous study on sunflower where cryo-SEM results did not agree with expectations. The reasons for this disagreement are suggested, but further study is required for a full elucidation.  相似文献   

17.
Recovery of citrus surface roots following prolonged exposure to dry soil   总被引:2,自引:0,他引:2  
The effects of prolonged exposure to dry surface soil on the capacity of roots to take up water and phosphorus were examined in mycorrhizal sour orange (Citrus aurantium L.) seedlings grown in pots with upper and lower portions separated hydraulically. In the first experiment, upper portions of the pots were either irrigated every 2-3 d, droughted for 14 d, droughted for 43 d, or droughted for 42 d followed by 8 d re-irrigation. Lower portions of the pots were irrigated and fertilized every 2-3 d. Phosphorus uptake capacity was estimated in excised roots using 32P in aerated 50, 750, and 1500 M P solutions. Exposure to dry soil had no appreciable effect on P uptake capacity. In the second experiment, the ability of intact root to acquire water and P in the 8 d following rewatering after roots were exposed to localized drought for 14 and 43 d was examined. Roots were observed non-destructively using small transparent tubes (2 cm diameter) and a rigid borescope. Soil water depletion was monitored using time-domain reflectrometry. Phosphorus (32P) was added at various depths in the soil in the upper compartment and uptake was assessed by non-destructively counting beta particle emissions from leaves using a scintillation probe. Similar to the first experiment, localized drought had no effect on P uptake and soil water depletion in citrus roots compared to continuously irrigated plants. Water and P uptake in the first few days apparently occurred from existing roots because of delayed production of new roots in the droughted treatment. Thus, citrus roots exposed to extended periods of dry soil apparently maintain or very quickly recover P and water uptake capacity. This behaviour is consistent with an overall rooting strategy where essentially no surface roots are shed following prolonged exposure to dry soil.  相似文献   

18.
Summary Green lichens have been shown to attain positive net photosynthesis in the presence of water vapour while blue-green lichens require liquid water (Lange et al. 1986). This behaviour is confirmed not only for species with differing photobionts in the genusPseudocyphellaria but for green and blue-green photobionts in a single joined thallus (photosymbiodeme), with a single mycobiont, and also when adjacent as co-primary photobionts. The different response is therefore a property of the photobiont. The results are consistent with published photosynthesis/water content response curves. The minimum thallus water content for positive net photosynthesis appears to be much lower in green lichens (15% to 30%, related to dry weight) compared to blue-greens (85% to 100%). Since both types of lichen rehydrate to about 50% water content by water vapour uptake only green lichens will show positive net photosynthesis. It is proposed that the presence of sugar alcohols in green algae allow them to retain a liquid pool (concentrated solution) in their chloroplasts at low water potentials and even to reform it by water vapour uptake after being dried. The previously shown difference in δ13C values between blue-green and green lichens is also retained in a photosymbiodeme and must be photobiont determined. The wide range of δ13C values in lichens can be explained by a C3 carboxylation system and the various effects of different limiting processes for photosynthetic CO2 fixation. If carboxylation is rate limiting, there will be a strong discrimination of13CO2, at high internal CO2 partial pressure. The resulting very low δ13C values (-31 to-35‰) have been found only in green lichens which are able to photosynthesize at low thallus water content by equilibraiton with water vapour. When the liquid phase diffusion of CO2 becomes more and more rate limiting and the internal CO2 pressure decreases, the13C content of the photosynthates increases and less negative δ13C values results, as are found for blue-green lichens.  相似文献   

19.
The two endolithic lichen species Hymenelia prevostii and Hymenelia coerulea were investigated with regard to their thallus morphology and their effects on the surrounding substrate. The physiological processes responsible for the observed alterations of the rock were identified. Whereas the thallus surface of H. coerulea was level, H. prevostii formed small depressions that were deepest in the thallus center. In a cross‐section, both species revealed an algal zone consisting of algal cavities parallel to the substrate surface and a fungal zone below. However, H. prevostii revealed significantly larger cavities with more than twice the cell number and a denser pattern of cavities than H. coerulea, resulting in a biomass per surface area being more than twice as large. Below H. prevostii the layer of macroscopically visibly altered rock material was about twice as deep and within this layer, the depletion of calcium and manganese was considerably higher. In simultaneous measurements of the oxygen uptake/oxygen release and pH shift, the isolated algal strains of both lichens revealed respiration‐induced acidification of the medium in the dark. At higher light intensities, H. coerulea and to a lesser extent also H. prevostii alkalized the medium which may lessen the acidification effect somewhat under natural conditions. In a long‐term growth experiment, the isolated algal strains of both lichens revealed acidification of the medium to a similar extent. Neither acidic lichen substances nor oxalic acid was identified. The significant differences between the weathering patterns of both species are based on the same respiration‐induced acidification mechanism, with H. prevostii having a greater effect due to its higher biomass per area.  相似文献   

20.
Geir Hestmark 《Oecologia》1997,111(4):523-528
The lichens Lasallia pustulata and Umbilicaria spodochroa grow in dense monospecific or mixed populations on the coastal cliffs of southern Scandinavia. Attached to the substrate by only a thin central holdfast, their shield-shaped thalli compete for light and space for growth by overlapping each other. Matched pair experiments in the laboratory and field observations of interacting pairs show that different behavioural responses to precipitation tend to result in the margins of U. spodochroa overlapping those of L. pustulata within a few minutes. The behaviour is apparently caused by different capacities for water absorption in the upper and lower cortices of the species. An initial period of repeated encounter caused by thallus expansion and contraction during precipitation will be followed by a period in which U. spodochroa grows to overlap L. pustulata more and more. When the overlapping lichens are wet, flexible and photosynthetically active, the thallus above rests directly on the upper surface of the one below. Very little light is transmitted through thalli of U. spodochroa, and the shaded parts of L. pustulata are retarded in their growth and die off. Received: 29 August 1996 / Accepted: 19 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号