首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Key message

Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis.

Abstract

Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
  相似文献   

2.
3.
Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development.  相似文献   

4.
5.
We characterized the physiological functions of Nicotiana benthamiana Chloroplast Envelope Protein 1 (NbCEP1) in Nicotiana benthamiana. NbCEP1 contains a chloroplast transit peptide and a single transmembrane domain at the N terminus, and most of its protein coding region is comprised of 15 leucine-rich-repeats (LRRs). The NbCEP1 gene is expressed in both aerial and underground plant tissues, and is induced by light. A GFP fusion protein of full length NbCEP1 was targeted to the chloroplast envelope and co-localized with OEP7:RFP, a marker protein for the chloroplast envelope. A fusion protein consisting of GFP and the NbCEP1 transit peptide mainly localized in the chloroplast stroma. Reduction of NbCEP1 expression by virus-induced gene silencing resulted in a leaf yellowing phenotype without much affecting overall plant growth. At the cellular level, depletion of NbCEP1 severely influenced chloroplast development, reducing both the number and size of the chloroplasts. Interestingly, mitochondrial development was also impaired, possibly an indirect effect of chloroplast ablation. A deficiency in NbCEP1 activity decreased the chlorophyll and carotenoid levels. Our results suggest that NbCEP1 plays a critical function, possibly through protein-protein interactions mediated by its LRRs, in chloroplast development in N. benthamiana.  相似文献   

6.
Proteins belonging to the enhancer of RNA interference‐1 subfamily of 3′–5′ exoribonucleases participate in divergent RNA pathways. They degrade small interfering RNAs (siRNAs), thus suppressing RNA interference, and are involved in the maturation of ribosomal RNAs and the degradation of histone messenger RNAs (mRNAs). Here, we report evidence for the role of the plant homologue of these proteins, which we termed ENHANCED RNA INTERFERENCE‐1‐LIKE‐1 (ERIL1), in chloroplast function. In vitro assays with AtERIL1 proved that the conserved 3′–5′ exonuclease activity is shared among all homologues studied. Confocal microscopy revealed that ERL1, a nucleus‐encoded protein, is targeted to the chloroplast. To gain insight into its role in plants, we used Nicotiana benthamiana and Arabidopsis thaliana plants that constitutively overexpress or suppress ERIL1. In the mutant lines of both species we observed malfunctions in photosynthetic ability. Molecular analysis showed that ERIL1 participates in the processing of chloroplastic ribosomal RNAs (rRNAs). Lastly, our results suggest that the missexpression of ERIL1 may have an indirect effect on the microRNA (miRNA) pathway. Altogether our data point to an additional piece of the puzzle in the complex RNA metabolism of chloroplasts.  相似文献   

7.
SYNOPSIS. The 16S ribosomal RNA of the chloroplast of Euglena gracilis strain Z has been characterized in terms of its 2-dimensional electrophoretic “fingerprint” (T1 ribonuclease). Over 100 spots were resolved on the “fingerprint” and each spot was characterized as to which RNA oligonucleotide fragment(s) it contained. When compared to similar analyses of prokaryotic 16S rRNAs and eukaryotic cytoplasmic 18S rRNAs, the chloroplast 16S rRNA was a typically prokaryotic RNA, but bore little if any relationship to eukaryotic 18S rRNAs. Therefore, the cistrons for chloroplast 16S rRNA are related to the equivalent prokaryotic cistrons, but, apparently, are not related to the equivalent eukaryotic cistrons. Among the organisms available for comparison, the Euglena chloroplast 16S rRNA appears most closely related to the 16S rRNA of the eukaryote, Porphyridium cruentum (a red alga), and at least distantly related to the 16S rRNAs of the blue-green algae and perhaps also to the bacilli.  相似文献   

8.
9.
10.
Several effectors from phytopathogens usually target various cell organelles to interfere with plant defenses, and they generally contain sequences that direct their translocation into organelles, such as chloroplasts. In this study, we characterized a different mechanism for effectors to attack chloroplasts in wheat (Triticum aestivum). Two effectors from Puccinia striiformis f. sp. tritici (Pst), Pst_4, and Pst_5, inhibit Bax-mediated cell death and plant immune responses, such as callose deposition and reactive oxygen species (ROS) accumulation. Gene silencing of the two effectors induced significant resistance to Pst, demonstrating that both effectors function as virulence factors of Pst. Although these two effectors have low sequence similarities and lack chloroplast transit peptides, they both interact with TaISP (wheat cytochrome b6–f complex iron–sulfur subunit, a chloroplast protein encoded by nuclear gene) in the cytoplasm. Silencing of TaISP impaired wheat resistance to avirulent Pst and resulted in less accumulation of ROS. Heterogeneous expression of TaISP enhanced chloroplast-derived ROS accumulation in Nicotiana benthamiana. Co-localization in N. benthamiana and western blot assay of TaISP content in wheat chloroplasts show that both effectors suppressed TaISP from entering chloroplasts. We conclude that these biotrophic fungal effectors suppress plant defenses by disrupting the sorting of chloroplast protein, thereby limiting host ROS accumulation and promoting fungal pathogenicity.

Despite the lack of chloroplast transit peptide, rust effectors affect chloroplast-mediated defenses by suppressing import of host Fe–S protein to chloroplast to promote pathogenicity of stripe rust.  相似文献   

11.
12.
An Arabidopsis mutant rnr1, which has a defect in the basic genetic system in chloroplasts, was isolated using the screening of the high chlorophyll fluorescence phenotype. Whereas chlorophyll fluorescence and immunoblot studies showed the mutant had reduced activities of photosystems I and II, molecular characterization of the mutant suggested that a T-DNA insertion impaired the expression of a gene encoding a RNase R family member with a targeting signal to chloroplasts. Since RNase R family members have a 3–5 exoribonuclease activity, we examined the RNA profile in chloroplasts. In rnr1 the intercistronic cleavage between 23S and 4.5S rRNA was impaired, and a significant reduction in rRNA in chloroplasts was found, suggesting that RNR1 functions in the maturation of chloroplast rRNA. The present results suggest that defects in the genetic system in chloroplasts cause high chlorophyll fluorescence, pale green leaf, and marked reduction in the growth rate, whereas the levels of some chloroplast RNA were higher in rnr1 than in the wild-type.  相似文献   

13.
14.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

15.
Bellaoui M  Gruissem W 《Planta》2004,219(5):819-826
The DCL (defective chloroplasts and leaves) gene of tomato (Lycopersicon esculentum Mill.) is required for chloroplast development, palisade cell morphogenesis, and embryogenesis. Previous work suggested that DCL protein is involved in 4.5S rRNA processing. The Arabidopsis thaliana (L.) Heynh. genome contains five sequences encoding for DCL-related proteins. In this paper, we investigate the function of AtDCL protein, which shows the highest amino acid sequence similarity with tomato DCL. AtDCL mRNA was expressed in all tissues examined and a fusion between AtDCL and green fluorescent protein (GFP) was sufficient to target GFP to plastids in vivo, consistent with the localization of AtDCL to chloroplasts. In an effort to clarify the function of AtDCL, transgenic plants with altered expression of this gene were constructed. Deregulation of AtDCL gene expression caused multiple phenotypes such as chlorosis, sterile flowers and abnormal cotyledon development, suggesting that this gene is required in different organs. The processing of the 4.5S rRNA was significantly altered in these transgenic plants, indicating that AtDCL is involved in plastid rRNA maturation. These results suggest that AtDCL is the Arabidopsis ortholog of tomato DCL, and indicate that plastid function is required for normal plant development.Abbreviations DCL Defective chloroplasts and leaves - GFP Green fluorescent protein  相似文献   

16.
Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid‐localized pentatricopeptide repeat (PPR) protein with a small MutS‐related domain, is required for maturation of the 23S–4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5′ end of the 23S–4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA ‘footprint’ associated with this site in sot1 mutants. We found that more than half of the 23S–4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5′ and 3′ ends, and that the endonucleolytic cleavage product normally released from the 5′ end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5′ extremity of the 23S–4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5′ and 3′ ends.  相似文献   

17.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

18.
Chloroplasts play an indispensable role in the arms race between plant viruses and hosts. Chloroplast proteins are often recruited by plant viruses to support viral replication and movement. However, the mechanism by which chloroplast proteins regulate potyvirus infection remains largely unknown. In this study, we observed that Nicotiana benthamiana ribosomal protein large subunit 1 (NbRPL1), a chloroplast ribosomal protein, localized to the chloroplasts via its N-terminal 61 amino acids (transit peptide), and interacted with tobacco vein banding mosaic virus (TVBMV) nuclear inclusion protein b (NIb), an RNA-dependent RNA polymerase. Upon TVBMV infection, NbRPL1 was recruited into the 6K2-induced viral replication complexes in chloroplasts. Silencing of NbRPL1 expression reduced TVBMV replication. NbRPL1 competed with NbBeclin1 to bind NIb, and reduced the NbBeclin1-mediated degradation of NIb. Therefore, our results suggest that NbRPL1 interacts with NIb in the chloroplasts, reduces NbBeclin1-mediated NIb degradation, and enhances TVBMV infection.  相似文献   

19.
20.
We have examined the accessibility to diethylpyrocarbonate of spinach chloroplast 4.5S ribosomal RNA when free and when it is part of the ribosomal structure. The modifications in free 4.5S RNA were found mostly in single-stranded regions of the secondary structure model proposed in our previous paper (Kumagai, I. et al. (1982) J.B.C. 257, 12924-28): adenines at positions 17, 19, 33, 36, 54, 55, 60, 64, 68, 72, 77, 86 and 87 were identified as the reactive residues. On the other hand, in 4.5S RNA in 70S ribosomes or 50S subunits, adenine 33 was exclusively modified, and its reactivity was much higher than in free 4.5S RNA. This highly accessible A33 of spinach 4.5S RNA is located within a characteristic seven nucleotide sequence, which is found in the 4.5S rRNAs from spinach, tobacco and a fern but deleted in 4.5S RNAs from maize and wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号