首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

5.
6.
7.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

8.
9.
ALBINO3, a homologue of PPF1 in Arabidopsis, encodes a chloroplast protein, and is essential for chloroplast differentiation. In the present study, ALBINO3(−) transgenic plants exhibited a significant decrease in both the number of rosette leaves at bolting and the days before bolting, suggesting the important roles of ALBINO3 in regulating flowering during non-inductive short-day photoperiods. ALBINO3 mRNA was apparently accumulated in shoot apical meristem and floral meristems around the shoot apical meristem in wild-type plants. ALBINO3 might be predominantly involved in inducing the floral repression pathway by activating the expression of TFL1, and by suppressing the expression of LFY, respectively, in the shoot apical meristem. Moreover, the function of ALBINO3 in regulating flowering transition depended on the expression of CO and GA1, because ALBINO3 might function in the downstream integration of the photoperiod-dependent and the photoperiod-independent pathways. These results suggest that ALBINO3 may have an important integrative function in the flowering process in Arabidopsis.  相似文献   

10.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

11.
Miura K  Sato A  Ohta M  Furukawa J 《Planta》2011,234(6):1191-1199
High salinity is an environmental factor that inhibits plant growth and development, leading to large losses in crop yields. We report here that mutations in SIZ1 or PHO2, which cause more accumulation of phosphate compared with the wild type, enhance tolerance to salt stress. The siz1 and pho2 mutations reduce the uptake and accumulation of Na+. These mutations are also able to suppress the Na+ hypersensitivity of the sos3-1 mutant, and genetic analyses suggest that SIZ1 and SOS3 or PHO2 and SOS3 have an additive effect on the response to salt stress. Furthermore, the siz1 mutation cannot suppress the Li+ hypersensitivity of the sos3-1 mutant. These results indicate that the phosphate-accumulating mutants siz1 and pho2 reduce the uptake and accumulation of Na+, leading to enhanced salt tolerance, and that, genetically, SIZ1 and PHO2 are likely independent of SOS3-dependent salt signaling.  相似文献   

12.
13.
The effect of hydrogen peroxide treatment on the salt tolerance of wild-type Arabidopsis thaliana L. plants (Col-0) and plants transformed with the bacterial salicylate hydroxylase gene (NahG) was studied. The base tolerance to salt stress caused by 200 mM of NaCl in solution culture was higher in plants with the NahG genotype in comparison with the wild-type plants. Growth inhibition was observed for wild-type plants under the action of exogenous hydrogen peroxide, which was not observed for the NahG transformants; salt tolerance increased in the both types of plants after treatment, which was assessed based on the growth indicators and the ability to preserve the chlorophyll pool following NaCl treatment. The content of endogenous Н2О2 in the leaves of wild-type plants increased significantly following exogenous hydrogen peroxide treatment and salt stress, while it practically did not change in the leaves of the NahG genotype. The SOD activity increased in both genotypes after treatment with exogenous hydrogen peroxide, and remained at an elevated level after salt stress in comparison with the nontreated plants. Furthermore, the catalase activity increased in leaves of the salicylate-deficient genotype but not in the Col-0 genotype. The guaiacol peroxidase activity increased in plants of both genotypes under the action of hydrogen peroxide and salt stress, with the NahG plants demonstrating a higher degree of increase. The Н2О2 treatment facilitated the increase of the proline content in leaves of the plants of both genotypes under conditions of salt stress. It was concluded that there were hydrogen peroxide signal transduction pathways in Arabidopsis plants that were salicylic acid independent and that the antioxidant system functioned more effectively in salicylate-deficient Arabidopsis plants.  相似文献   

14.
Zinc is essential but toxic in excess. A bacterial metallothionein, SmtA from Synechococcus PCC 7942, has high affinity for Zn2+ and the intracellular exclusively handling of Zn2+. In this study, we report a functional analysis of SmtA in Arabidopsis thaliana and its response to zinc stress. After high zinc stress, the transgenic plants over-expressing SmtA showed higher survival rate than the wild type. We also found that over-expression of SmtA in Arabidopsis increased the activities of SOD and POD, and enhanced the tolerance to zinc stress. Together, our results indicate that SmtA may play an important role in the response to zinc stress in Arabidopsis.  相似文献   

15.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

16.
17.
18.
A small HSP gene, ZmsHSP, was isolated from Zea mays. Sequence analysis revealed that the open reading frame of ZmsHSP was 477 bp and that it encodes a protein composed of 159 amino acid residues with a calculated molecular mass of 18.17 kD and a predicated isoelectric point (pI) of 5.63. ZmsHSP contains a CS domain (p23-like domain) and shares similarity with the HSP90 co-chaperone p23. The expression level of ZmsHSP was different among various tissues with the highest expression in leaves and the lowest in silks. Results also showed that the expression of ZmsHSP in maize was significantly up-regulated by dehydration. Transgenic Arabidopsis plants overexpressing ZmsHSP under the control of the CaMV 35S promoter had lower endogenous cytokinin content and showed more sensitivity to cytokinin during the germination and early seedling stage than wild-type plants, suggesting that ZmsHSP might has a function in cytokinin response in Zea mays.  相似文献   

19.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

20.
Golisz A  Sugano M  Hiradate S  Fujii Y 《Planta》2011,233(2):231-240
Velvetbean (Mucuna pruriens) plants impede the growth of neighboring plants. One compound, 3-(3′,4′-dihydroxyphenyl)-l-alanine (l-DOPA), is responsible for the allelopathic capacity of velvetbean. This compound is an active allelochemical that decreases root growth of several plant species. In mammals, l-DOPA is a well-known therapeutic agent for the symptomatic relief of Parkinson’s disease. However, its mode of action in plants is still not well understood. To address such issues, gene expression in Arabidopsis thaliana plants, which had been exposed to l-DOPA, was analyzed using DNA microarrays. After 6 h of l-DOPA exposure, the expression of 110 genes was significantly upregulated, and the expression of 69 genes was significantly downregulated. These induced genes can be divided into different functional categories, mainly on the basis of subcellular localization, metabolism, and proteins with a binding function or cofactor requirement. Based on these results, we suggest that l-DOPA acts by two mechanisms: it influences amino acid metabolism and deregulates metal homeostasis, especially that of iron, which is required for the fundamental biological processes of all organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号