首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We studied the fungicidal activity of a biological preparation from the fungi of the genus Chaetomium against soil phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum. The inhibitory effect of the preparation under study depended on its concentration, duration of storage, and growth characteristics of pure cultures of the phytopathogens. The highest (98.8%) inhibitory activity was observed on the third day of the interaction with Rhizoctonia solani. After a 2-year storage, this preparation was capable of inhibiting the growth of phytopathogens only at high doses. The preparation precluded the development of a bare patch but increased the productivity of potato plants. The preparation may serve as an alternative to chemical fungicides for plant protection.  相似文献   

2.
We studied the fungicidal activity of a biological preparation from the fungi of the genus Chaetomium against soil phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum. The inhibitory effect of the preparation under study depended on its concentration, duration of storage, and growth characteristics of pure cultures of the phytopathogens. The highest (98.8%) inhibitory activity was observed on day 3 of the interaction with Rhizoctonia solani. After a 2-year storage, this preparation was capable of inhibiting the growth of the phytopathogens only at high doses. The preparation precluded the development of bare patch and increased the productivity of potato plants. The preparation may serve as an alternative to chemical fungicides for plant protection.  相似文献   

3.
Kinetics of growth inhibition of fungi Fusarium and Bipolaris caused by bacteria Pseudomonas sp. V-6798 and Azotobacter chroococum V-2272 D on dense nutrient media, both in single-crop system and by coinoculation, was demonstrated. The speed of fungal colonies growth as a function of bacteria concentration in inoculate was shown to be in accordance with the Ierysalimskii modified equation. The degree of antagonistic activity was suggested to be assessed by the constant of inhibition (Ki) and residual rate of fungi growth. Constant of inhibition of fungal growth by bacteria varied within 10-100 cells/ml for observed species. More effective fungistatic influence of bacterial strains in combined culture was observed. Parameters reported in the present study allow comparing the degree of bacteria antifungal activity in vitro. Suggested screening method could be used for selection of bacteria as activity biofungicide and while selecting biomedication for defined plant pathogen disruption.  相似文献   

4.
Kinetics of growth inhibition of fungi Fusarium and Bipolaris caused by bacteria Pseudomonas sp. V-6798 and Azotobacter chroococum V-2272 D on dense nutrient media, both in single-crop system and by coinoculation, was demonstrated. The speed of fungal colonies growth as a function of bacteria concentration in inoculate was shown to be in accordance with the Ierysalimskii modified equation. The degree of antagonistic activity was suggested to be assessed by the constant of inhibition (K i ) and residual rate of fungi growth. Constant of inhibition of fungal growth by bacteria varied within 10–100 cells/ml for observed species. More effective fungistatic influence of bacterial strains in combined culture was observed. Parameters reported in the present study allow comparing the degree of bacteria antifungal activity in vitro. Suggested screening method could be used for selection of bacteria as activity biofungicide and while selecting biomedication for defined plant pathogen disruption.  相似文献   

5.
Phytocystatins are cysteine proteinase inhibitors from plants implicated in defense mechanisms against insects and plant pathogens. We have previously characterized an amaranth cystatin cDNA and analyzed its response to different kinds of abiotic stress [37]. In order to characterize amaranth cystatin, the coding sequence was expressed in Escherichia coli using the pQE-2 vector. Recombinant cystatin was predominantly found in the soluble fraction of the cell extract. Large amounts (266 mgL?1) of pure recombinant protein were obtained by affinity chromatography in a single step of purification. The amaranth cystatin with a pI 6.8 and an apparent 28 kDa molecular mass inhibited papain (E.C.3.4.22.2) (Ki 115 nM), ficin (E.C.3.4.22.3) (Ki 325 nM) and cathepsin L (E.C.3.4.22.15) (Ki 12.7 nM) but not stem bromelain (E.C.3.4.22.32), and cathepsin B (E.C.3.4.22.1) activities, in colorimetric assays. Furthermore, it was able to arrest the fungal growth of Fusarium oxysporum, Sclerotium cepivorum and Rhyzoctonia solani. It was further demonstrated that recombinant AhCPI is a weak inhibitor of the endogenous cysteine proteinase activities in the fungal mycelium. These findings contribute to a better understanding of the amaranth cystatin activity and encourage further studies of this protein.  相似文献   

6.
Summary Aeriobiological studies are essential for understanding the distribution, ecology and deposition patterns of both phytopathogenic and nonpathogenic fungal spores which are carried away from their source. Many spores and conidia are devitalized during aerial transportation as a consequence of being exposed to atmospheric agents. Nonetheless, a sufficient number remain viable, causing infections of various kinds, some of which extremely serious and with an epidemic trend.In order to predict the onset of fungi-induced diseases, it is necessary to be able to determine the inoculum source of the pathogenic agent. As air is the main vector transporting pathogenic fungal spores and conidia, periodical monitoring is required. Thus, having established the critical stages of plant infection, necessary precautionary measures can be undertaken in order to control diseases onset and development.It is therefore necessary to gain a through understanding of spore takeoff and dispersal mechanisms so as to determine how the spores and conidia are transported by air currents onto the plants and how they cause infective impaction. Spores and conidia suspended in the atmosphere can be collected by means of appropriate traps filtering a predetermined amount of air at predetermined time intervals in order to be able to make predictions as to the possibility of plant infection. Volumetric air sampling allows not only to determine the concentration of spores and conidia in a given period of time but also to establish the hours of the day in which they are present in highest concentrations and in which therefore they are more liable to cause infection. This information may be used in estimating the incidence of disease symptoms, the duration of infection and the seriousness of the disease.On the basis of this data, mathematical models for predicting epidemics can be worked out.  相似文献   

7.
We have studied the effects of two polyamine biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA), and of polyamines (PAs), alone and in combination, on mycelial growth and morphology of four phytopathogenic fungi: Botrytis sp, B. cinerea, Rhizoctonia solani and Monilinia fructicola. The inhibitors were added to a Czapek agar medium to get final concentrations of 0.1, 0.5 and 1.0 mM. DFMO and DFMA, suicide inhibitors of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) respectively, inhibited mycelial growth strongly; the effect was generally more pronounced with DFMA than with DFMO, but each fungus had its own response pattern. The addition of the PAs putrescine (Put) and spermidine (Spd) to the culture medium resulted in a promotion of growth. In Botrytis sp and Monilinia fructicola exposed to inhibitors plus PAs, mycelial growth was actually increased above control values. Mycelial morphology was altered and cell size dramatically reduced in plates containing inhibitors alone, whereas with PAs alone, or in combination with inhibitors, morphology was normal, but cell length and diameters increased considerably. These results suggest that PAs are essential for growth in fungal mycelia. The inhibition caused by DFMA may be due to its arginase-mediated conversion to DFMO.  相似文献   

8.
Pathogenicity genes of phytopathogenic fungi   总被引:14,自引:0,他引:14  
Recently many fungal genes have been identified that, when disrupted, result in strains with a reduction or total loss of disease symptoms. Such pathogenicity genes are the subject of this review. The large number of pathogenicity genes identified is due to the application of tagged mutagenesis techniques (random or targeted). Genes have been identified with roles in the formation of infection structures, cell wall degradation, overcoming or avoiding plant defences, responding to the host environment, production of toxins, and in signal cascades. Additionally, genes with no database matches and with ‘novel’ functions have also been found. Improved technologies for mutation analysis and for sequencing and analysing fungal genomes hold promise for identifying many more pathogenicity genes.  相似文献   

9.
The autoregulation of conidium germination in phytopathogenic micromycetes of the genera Fusarium, Botrytis, and Bipolaris was studied. It was shown that Trichoderma longibrachiatum was less competitive than Fusarium oxysporum after their simultaneous inoculation but inhibited the phytopathogen growth in the case of earlier introduction. In the latter case, no autoinhibition of the germination of F. oxysporum conidia occurred; moreover, cooperative effect was observed, i.e., the number of germinated F. oxysporum conidia increased with an increase in their density.  相似文献   

10.
The worldwide demand for reduced and restricted use of pesticides in agriculture due to serious environmental effects, health risks and the development of pathogen resistance calls for the discovery of new bioactive compounds. In the medical field, antibiotic-resistant microorganisms have become a major threat to man, increasing mortality. Endophytes are endosymbiotic microorganisms that inhabit plant tissues without causing any visible damage to their host. Many endophytes secrete secondary metabolites with biological activity against a broad range of pathogens, making them potential candidates for novel drugs and alternative pesticides of natural origin. We isolated endophytes from wild plants in Israel, focusing on endophytes that secrete secondary metabolites with biological activity. We isolated 302 different endophytes from 30 different wild plants; 70 of them exhibited biological activity against phytopathogens. One biologically active fungal endophyte from the genus Penicillium, isolated from a squill (Urginea maritima) leaf, was further examined. Chloroform-based extraction of its growth medium was similarly active against phytopathogens. High-performance liquid chromatography separation followed by gas chromatography/mass spectrometry analysis revealed a single compound—mycophenolic acid—as the main contributor to the biological activity of the organic extract.  相似文献   

11.
12.
13.
铁载体是微生物在缺铁条件下分泌的小分子有机化合物,以获取铁元素维持其生长。细菌分泌的铁载体在拮抗植物病原菌和促进植物生长方面具有重要作用。本文总结了细菌铁载体拮抗植物病原真菌的营养和生态位竞争、诱导植物诱导性系统抗性、扰乱病原菌铁稳态的机制,以及促进植物生长的作用,以解释细菌分泌的铁载体在多功能微生物菌剂研制中的重要作用。  相似文献   

14.
15.
The purpose of the present study was to improve the antifungal activity against selected phytopathogenic fungi of the previously identified hexapeptide PAF19. We describe some properties of a set of novel synthetic hexapeptides whose D-amino acid sequences were obtained through screening of a synthetic peptide combinatorial library in a positional scanning format. As a result of the screening, 12 putative bioactive peptides were identified, synthesized, and assayed. The peptides PAF26 (Ac-rkkwfw-NH(2)), PAF32 (Ac-rkwhfw-NH(2)), and PAF34 (Ac-rkwlfw-NH(2)) showed stronger activity than PAF19 against isolates of Penicillium digitatum, Penicillium italicum, and Botrytis cinerea. PAF26 and PAF32, but not PAF34, were also active against Fusarium oxysporum. Penicillium expansum was less susceptible to all four PAF peptides, and only PAF34 showed weak activity against it. Assays were also conducted on nontarget organisms, and PAF26 and PAF32 showed much-reduced toxicity to Escherichia coli and Saccharomyces cerevisiae, demonstrating selectivity towards certain filamentous fungi. Thus, the data showed distinct activity profiles for peptides differentiated by just one or two residue substitutions. Our conclusion from this observation is that a specificity factor is involved in the activity of these short peptides. Furthermore, PAF26 and PAF32 displayed activities against P. digitatum, P. italicum, and B. cinerea similar to that of the hemolytic 26-amino acid melittin, but they did not show the high toxicity of melittin towards bacteria and yeasts. The four peptides acted additively, with no synergistic interactions among them, and PAF26 was shown to have improved activity over PAF19 in in vivo orange fruit decay experiments.  相似文献   

16.
Thermolabile peptides inhibiting the growth of Helminthosporium sativum, a facultative phytopathogen, have been isolated from the low-molecular-weight fraction of extracellular metabolites of the strain Bacillus sp. 739. Paper chromatography of the fraction, followed by bioautography, revealed the presence of three components exhibiting antifungal activity. These components were separated by gel chromatography on Toyopearl HW-40. SDS-PAGE (the Laemmli procedure) demonstrated that only one component was a protein (MW, approximately 14 kDa). The other two substances were polypeptides with molecular weights less than 6 kDa each. The protein factor inhibited the growth of H. sativum with a minimum effective concentration of 0.1 to 0.2 mg/ml.  相似文献   

17.
分泌蛋白质组是指在特定时间和特定条件下,由组织或细胞等分泌的全部蛋白质。在病原真菌与植物的相互作用过程中,病原真菌会分泌大量的蛋白质和代谢产物,在病原真菌对植物的侵入、定殖和扩展等致病过程中起着重要作用。本文主要介绍了分泌蛋白质在植物病原真菌致病性中的作用、重要植物病原真菌分泌蛋白质组的研究进展、及植物病原真菌分泌蛋白质组的生物信息学预测分析等,对于全面了解植物病原真菌的致病机理具有重要意义。  相似文献   

18.
Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens.  相似文献   

19.
Cold adaptation in the phytopathogenic fungi causing snow molds   总被引:1,自引:0,他引:1  
Snow molds are psychrophilic or psychrotrophic fungal pathogens of forage crops, winter cereals, and conifer seedlings. These fungi can grow and attack dormant plants at low temperatures under snow cover. In this review, we describe the biodiversity and physiological and biochemical characteristics of snow molds that belong to various taxa. Cold tolerance is one of the important factors related to their geographic distribution, because snow molds develop mycelia under snow cover and because they should produce intra- and extracellular enzymes active at low temperatures for growth and infection. Basidiomycetous snow molds produce extracellular antifreeze proteins. Their physiological significance is to keep the extracellular environment unfrozen. The psychrophilic ascomycete Sclerotia borealis shows normal mycelial growth under frozen conditions, which is faster than that on unfrozen media at optimal growth temperature. This fungus does not produce extracellular antifreeze proteins, but osmotic stress tolerance enables the fungus to grow at subzero temperatures. In conclusion, different taxa of snow molds have different strategies to adapt under snow cover.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号