首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
2.
Virus infections induce the expression of ARGONAUTE1 (AGO1) mRNA and in parallel enhance the accumulation of miR168 (regulator of AGO1 mRNA). Here, we show that in virus‐infected plants the enhanced expression of AGO1 mRNA is not accompanied by increased AGO1 protein accumulation. We also show that the induction of AGO1 mRNA level is a part of the host defence reaction, whereas the induction of miR168, which overlaps spatially with virus‐occupied sectors, is mediated mainly by the Tombusvirus p19 RNA‐silencing suppressor. The absence of p19 results in the elimination of miR168 induction and accompanied with the enhanced accumulation of AGO1 protein. In transient expression study, p19 mediates the induction of miR168 and the down‐regulation of endogenous AGO1 level. P19 is not able to efficiently bind miR168 in virus‐infected plants, indicating that this activity is uncoupled from the small RNA‐binding capacity of p19. Our results imply that plant viruses can inhibit the translational capacity of AGO1 mRNA by modulating the endogenous miR168 level to alleviate the anti‐viral function of AGO1 protein.  相似文献   

3.
RNA silencing is one of the main defence mechanisms employed by plants to fight pathogens. p19 protein encoded by the tomato bushy stunt virus (TBSVp19) is known as a suppressor of RNA silencing via siRNA sequestration to prevent the assembly of RISC. To better understand the impact of TBSVp19 on silencing and its roles in Phytophthora pathogens, we used the transient expression assay in Nicotiana benthamiana and found that the leaves expressing TBSVp19 were more susceptible to Phytophthora parasitica. Furthermore, we demonstrated that TBSVp19‐mediated plant susceptibility in N. benthamiana is dependent on RNA‐dependent RNA polymerase 6 (RDR6). We also tested the role of RNA silencing in resistance of soybean hairy roots to Phytophthora. The lesion size induced by P. sojae on TBSVp19‐expressing soybean hairy roots was slightly, but significantly larger than GFP‐expressing soybean hairy roots. Finally, the Arabidopsis gene silencing mutants ago1‐27, zip‐1, sgs3‐11 and rdr6‐11 were also examined for their resistance to P. parasitica. The results clearly showed that resistance levels of the mutants were visibly reduced compared with the wild type. Taken together, these results suggest that the gene silencing system in plants is essential for resistance to Phytophthora pathogens.  相似文献   

4.
Plant viruses ubiquitously mediate the induction of miR168 trough the activities of viral suppressors of RNA silencing (VSRs) controlling the accumulation of ARGONAUTE1 (AGO1), one of the main components of RNA silencing based host defence system. Here we used a mutant Tombusvirus p19 VSR (p19-3M) disabled in its main suppressor function, small interfering RNA (siRNA) binding, to investigate the biological role of VSR-mediated miR168 induction. Infection with the mutant virus carrying p19-3M VSR resulted in suppressed recovery phenotype despite the presence of free virus specific siRNAs. Analysis of the infected plants revealed that the mutant p19-3M VSR is able to induce miR168 level controlling the accumulation of the antiviral AGO1, and this activity is associated with the enhanced accumulation of viral RNAs. Moreover, saturation of the siRNA-binding capacity of p19 VSR mediated by defective interfering RNAs did not influence the miR168-inducing activity. Our data indicate that p19 VSR possesses two independent silencing suppressor functions, viral siRNA binding and the miR168-mediated AGO1 control, both of which are required to efficiently cope with the RNA-silencing based host defence. This finding suggests that p19 VSR protein evolved independent parallel capacities to block the host defence at multiple levels.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Micro RNAs (miRNAs) are processed from precursor RNA molecules with precisely defined secondary stem-loop structures. ARGONAUTE1 (AGO1) is the main executor component of miRNA pathway and its expression is controlled via the auto-regulatory feedback loop activity of miR168 in plants. Previously we have shown that AGO1 loading of miR168 is strongly restricted leading to abundant cytoplasmic accumulation of AGO-unbound miR168. Here, we report, that intrinsic RNA secondary structure of MIR168a precursor not only defines the processing of miR168, but also precisely adjusts AGO1 loading efficiency determining the biologically active subset of miR168 pool. Our results show, that modification of miRNA duplex structure of MIR168a precursor fragment or expression from artificial precursors can alter the finely adjusted loading efficiency of miR168. In dcl1-9 mutant where, except for miR168, production of most miRNAs is severely reduced this mechanism ensures the elimination of unloaded AGO1 proteins via enhanced AGO1 loading of miR168. Based on this data, we propose a new competitive loading mechanism model for miR168 action: the miR168 surplus functions as a molecular buffer for controlled AGO1 loading continuously adjusting the amount of AGO1 protein in accordance with the changing size of the cellular miRNA pool.  相似文献   

14.
RNA guided ribonuclease complexes play central role in RNA interference. Members of the evolutionarily conserved Argonaute protein family form the catalytic cores of these complexes. Unlike a number of other plant Argonautes, the role of AGO2 has been obscure until recently. Newer data, however, have indicated its involvement in various biotic and abiotic stress responses. Despite its suggested importance, there is no detailed characterization of this protein to date. Here we report cloning and molecular characterization of the AGO2 protein of the virological model plant Nicotiana benthamiana. We show that AGO2 can directly repress translation via various miRNA target site constellations (ORF, 3′ UTR). Interestingly, although AGO2 seems to be able to silence gene expression in a slicing independent fashion, its catalytic activity is still a prerequisite for efficient translational repression. Additionally, mismatches between the 3′ end of the miRNA guide strand and the 5′ end of the target site enhance gene silencing by AGO2. Several functionally important amino acid residues of AGO2 have been identified that affect its small RNA loading, cleavage activity, translational repression potential and antiviral activity. The data presented here help us to understand how AGO2 aids plants to deal with stress.  相似文献   

15.
RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double‐stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein–protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA‐induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre‐programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high‐molecular‐weight complex, suggesting the existence of a multi‐protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA–RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co‐expressed AGO1 in both the presence and absence of P0.  相似文献   

16.
17.
18.
Rice MicroRNA Effector Complexes and Targets   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号