首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋明华  朱珏妃  牛书丽 《生态学报》2020,40(18):6282-6292
生态系统在气候变化和土地利用及人类活动等的影响下其状态会由某一稳态转变到另一稳态。由于环境压力的复杂性、非线性、随机性等特征,往往导致状态转变表现为非线性、突变、跃变等特点。准确界定系统状态跃变的拐点或阈值点存在很大的挑战,而捕捉接近临界拐点前的生态系统结构和属性上的变化特征作为早期预警信号是切实可行的。早期预警信号理论经历理论框架构建、方法确立、机理认知等近半个多世纪的探索,已经由最初的通过仅依赖检测临界点恢复力的速率减慢、方差增加、系统自相关增强等统计学信号过度到更加多样化的检测方法,如检测系统组分属性的变化特征,诊断系统组分各属性之间的关系变化,系统组分的性状变化、系统组分网络结构变化等等,并且试图整合多信号提高预警的精确性。利用来自自然生态系统的长时间高密度数据集和空间代替时间的数据集,基于多度及性状信号的早期预警,结合稳定性、临界恢复力的减速、以及统计参数的指示作用对系统跃变进行早期诊断和预警是预测生态学的主旨。早期预警信号的深入研究不仅能够完善已有理论的不足,同时还能够为生态系统的保护和管理提供切实有效的理论指导。  相似文献   

2.
Geostatistical techniques were applied and a series of spatial indicators were calculated (occupation, aggregation, location, dispersion, spatial autocorrelation and overlap) to characterize the spatial distributions of European anchovy and sardine during summer. Two ecosystems were compared for this purpose, both located in the Mediterranean Sea: the Strait of Sicily (upwelling area) and the North Aegean Sea (continental shelf area, influenced by freshwater). Although the biomass of anchovy and sardine presented high interannual variability in both areas, the location of the centres of gravity and the main spatial patches of their populations were very similar between years. The size of the patches representing the dominant part of the abundance (80%) was mostly ecosystem- and species-specific. Occupation (area of presence) appears to be shaped by the extent of suitable habitats in each ecosystem whereas aggregation patterns (how the populations are distributed within the area of presence) were species-specific and related to levels of population biomass. In the upwelling area, both species showed consistently higher occupation values compared to the continental shelf area. Certain characteristics of the spatial distribution of sardine (e.g. spreading area, overlapping with anchovy) differed substantially between the two ecosystems. Principal component analysis of geostatistical and spatial indicators revealed that biomass was significantly related to a suite of, rather than single, spatial indicators. At the spatial scale of our study, strong correlations emerged between biomass and the first principal component axis with highly positive loadings for occupation, aggregation and patchiness, independently of species and ecosystem. Overlapping between anchovy and sardine increased with the increase of sardine biomass but decreased with the increase of anchovy. This contrasting pattern was attributed to the location of the respective major patches combined with the specific occupation patterns of the two species. The potential use of spatial indices as auxiliary stock monitoring indicators is discussed.  相似文献   

3.
Turing instability in pioneer/climax species interactions   总被引:1,自引:0,他引:1  
Systems of pioneer and climax species are used to model interactions of species whose reproductive capacity is sensitive to population density in their shared ecosystem. Intraspecies interaction coefficients can be adjusted so that spatially homogeneous solutions are stable to small perturbations. In a reaction-diffusion pioneer/climax model we will determine the critical value of the diffusion rate of the climax species, below which the equilibrium solution is unstable to non-homogeneous perturbations. For diffusion rates smaller than this critical value, an equilibrium solution remains stable to spatially homogeneous perturbations but is unstable to non-homogeneous perturbations. A Turing (diffusional) bifurcation leads to the formation of spatial patterns in species' densities. Forcing, interpreted as stocking or harvesting of the species, can reverse the bifurcation and establish equilibrium solutions which are stable to small perturbations. The implicit function theorem is used to determine whether stocking or harvesting of one of the species in the model is the appropriate remedy for diffusional instability. The use of stocking or harvesting by a natural resource manager thus influences the long-term dynamics and spatial distribution of species in a pioneer/climax ecosystem.  相似文献   

4.
A characteristic feature of the spatial distribution of many species is patchiness. This spatial patchiness may be generated by very different processes, e.g. fragmentation, succession and extinction-colonisation dynamics. In this study, we apply a spatial realistic metapopulation model to analyse the occupancy pattern of a rare and endangered grasshopper, Stauroderus scalaris. found in an extensive network of 158 patches. When the study was initiated in 1985 the regional occupancy was 9.3% declining down to 7.1% in 1989. Then there was a spatial expansion of the population and in 1993 as many as 27.3% of the patches were occupied and 32.9% in 1995. During this expansion phase, the dynamics obeyed metapopulation principles: large patches and less isolated ones were more likely to be colonised. In the beginning, local extinction risks were negatively related to patch size and positively influenced by isolation. However, later on neither area nor isolation affected extinction probabilities. Altogether, 20 extinctions and 56 colonisations were observed. The shift in regional occupancy, with a growth of ca 20%, coincides with perturbations to the patch network and the warmest summer in 140 yr. Our results suggest that S. scalaris persists on a dynamic habitat mosaic, where refuges are crucial during adverse periods, and stochastic environmental factors (disturbances and climate), that are correlated over large areas, are generating population dynamic patterns that are hard to predict using current modelling techniques.  相似文献   

5.
焦作市景观生态规划研究   总被引:2,自引:0,他引:2  
运用景观生态学原理,借助于地理信息系统技术,根据焦作市实际情况,将其景观构成要素分为耕地、园地、林地、居民点及工矿用地、水域和其它用地6个景观类型,采用景观多样性、景观优势度、景观破碎度和景观分离度等指标进行定量分析,归纳焦作市景观空间格局特征,提出焦作市景观生态规划的方案.焦作市的景观总体布局模式为:市域保留4~5个大型自然植被斑块,市区规划小型绿地斑块,生态廊道将大小绿地斑块联系起来,维持城市生态系统良性循环;适当合并居民点,形成以市区为中心,其外侧有博爱区、沁阳市等7个市、区的组团式城市群,通过快速干道相连,形成相对独立、相互依存、有机联系、协调发展的网络城市格局;城镇斑块镶嵌于以耕地、林地为背景的基质之中,以道路廊道、绿地廊道、水系廊道相连接,有利于保持物种多样性和景观异质性,改善城市生态环境.  相似文献   

6.
The main objective of this paper is to present an assessment approach for ecosystem services in an urban context covering the local and the regional scale. It was applied to different European cities. A set of indicators representing important urban ecosystem goods and services – local climate regulation, air cooling and recreation – was tested using spatial data along an urban–rural gradient. The results show that there is neither a typical rural–urban gradient in terms of urban ecosystem service provisioning nor a uniform urban spatial pattern of service provisioning that can serve as a generic model for cities. The results demonstrate that (1) core cities do not necessarily provide fewer ecosystem services compared to their regions and (2) there were no patches found within the four case study cities where all of the indicators report very high performance values. The analysis further shows that a high degree of imperviousness does not necessarily entail low ecosystem service provisioning if an urban structure contains a considerable amount of mature trees which support carbon storage and biodiversity. The results of the present paper provide insights into potentials and trade-offs between different urban ecosystem services that should be considered during urban planning when setting targets and establishing thresholds to protect environmental resources, ecosystem services and biodiversity for residents.  相似文献   

7.
科学有效的生态监管是落实我国生态文明建设、保障区域生态安全、实现城市可持续发展的必要途径和重要抓手。生态系统的监管涉及到社会、经济、自然等多个维度,水、土、气、生等多类要素,国家到局地等多个尺度。目前,已有生态监管常存在生态系统、生态要素、行政单元的割裂。如何整体考虑以上特征,开展科学的、系统的、空间显性的生态监管亟需理论技术的创新。通过整合等级斑块动态范式、复合生态系统理论、多功能景观理论,构建了多等级生态功能网格框架,以期为生态监管提供一个综合的概念与技术框架。等级斑块动态范式从等级作用的角度构建了多等级网格骨架,复合生态系统理论从多个维度丰富了多等级网格内涵,多功能景观理论明确了网格的功能。通过耦合多等级生态功能网格的划分、评价和监管,可实现系统、整体、差异化的生态监管,为生态文明建设提供有力支撑。  相似文献   

8.
Patch dynamics in a landscape modified by ecosystem engineers   总被引:8,自引:0,他引:8  
Ecosystem engineers, organisms that modify the environment, have the potential to dramatically alter ecosystem structure and function at large spatial scales. The degree to which ecosystem engineering produces large-scale effects is, in part, dependent on the dynamics of the patches that engineers create. Here we develop a set of models that links the population dynamics of ecosystem engineers to the dynamics of the patches that they create. We show that the relative abundance of different patch types in an engineered landscape is dependent upon the production of successful colonists from engineered patches and the rate at which critical resources are depleted by engineers and then renewed. We also consider the effects of immigration from either outside the system or from engineers that are present in non-engineered patches, and the effects of engineers that can recolonize patches before they are fully recovered on the steady state distribution of different patch types. We use data collected on the population dynamics of a model engineer, the beaver, to estimate the per-patch production rate of new colonists, the decay rate of engineered patches, and the recovery rate of abandoned patches. We use these estimated parameters as a baseline to determine the effects of varying parameters on the distribution of different patch types. We suggest a number of hypotheses that derive from model predictions and that could serve as tests of the model.  相似文献   

9.
In a rapidly changing world, quantifying ecosystem resilience is an important challenge. Historically, resilience has been defined via models that do not take spatial effects into account. These systems can only adapt via uniform adjustments. In reality, however, the response is not necessarily uniform, and can lead to the formation of (self‐organised) spatial patterns – typically localised vegetation patches. Classical measures of resilience cannot capture the emerging dynamics in spatially self‐organised systems, including transitions between patterned states that have limited impact on ecosystem structure and productivity. We present a framework of interlinked phase portraits that appropriately quantifies the resilience of patterned states, which depends on the number of patches, the distances between them and environmental conditions. We show how classical resilience concepts fail to distinguish between small and large pattern transitions, and find that the variance in interpatch distances provides a suitable indicator for the type of imminent transition. Subsequently, we describe the dependency of ecosystem degradation based on the rate of climatic change: slow change leads to sporadic, large transitions, whereas fast change causes a rapid sequence of smaller transitions. Finally, we discuss how pre‐emptive removal of patches can minimise productivity losses during pattern transitions, constituting a viable conservation strategy.  相似文献   

10.
A range of indicators have been proposed for identifying the elevated risk of critical transitions in ecosystems. Most indicators are based on the idea that critical slowing down can be inferred from changes in statistical properties of natural fluctuations and spatial patterns. However, identifying these signals in nature has remained challenging. An alternative approach is to infer changes in resilience from differences in standardized experimental perturbations. However, system-wide experimental perturbations are rarely feasible. Here we evaluate the potential to infer the risk of large-scale systemic transitions from local experimental or natural perturbations. We use models of spatially explicit landscapes to illustrate how recovery rates upon small-scale perturbations decrease as an ecosystem approaches a tipping point for a large-scale collapse. We show that the recovery trajectory depends on: (1) the resilience of the ecosystem at large scale, (2) the dispersal rate of organisms, and (3) the scale of the perturbation. In addition, we show that recovery of natural disturbances in a heterogeneous environment can potentially function as an indicator of resilience of a large-scale ecosystem. Our analyses reveal fundamental differences between large-scale weak and local-scale strong perturbations, leading to an overview of opportunities and limitations of the use of local disturbance-recovery experiments.  相似文献   

11.
景观连通性是衡量景观生态服务效力的重要指标.基于GIS技术,利用有效距离模型对连云港围垦新区连云新城水体进行景观连通性分析.结果表明: 连云新城水体景观整体连通性较差;水体景观连通性与生态过程特性、生态服务价值和空间位置密切相关.斑块生态服务价值越高,其对水体景观整体连通性贡献越大.一些具有长条状结构的斑块对提高景观连通性起着关键作用.斑块连通重要值分级及功能类群分类的结果表明,连云新城水体规划符合Forman的不可替代格局理论,新城规划和建设时应优先考虑和保护相应功能类群的水体景观斑块.在景观生态规划时,连通性应作为一个重要指标加以考量;构建生态廊道要考虑生态景观数量上的配置,更要重视景观的空间位置布局,以提高景观的整体连通性.
  相似文献   

12.
土地利用及景观格局演变对生态系统服务价值的影响   总被引:6,自引:0,他引:6  
王航  秦奋  朱筠  张传才 《生态学报》2017,37(4):1286-1296
基于1990—2013年土地利用数据和统计年鉴数据,构建CPI指数修订生态系统服务价值(ESV)系数,并进行淮河上游土地利用结构及空间格局的时空演变特征分析和ESV评价研究,探讨ESV对土地利用结构和格局变化的响应关系。结果表明:(1)淮河上游区域ESV整体呈上升趋势,1995—2005年ESV出现波动下降,在2010年前后明显上升,2010—2013年ESV增值高于其他时段;(2)ESV增量呈现山地丘陵区平原区的地形梯度效应,且其生态增值主要来源于林地和水域贡献;(3)ESV与土地利用时空变化和土地景观格局丰度和聚集度变化存在明显相关,说明了合理的土地利用开发方式及适当的开发速度将有助于改善生态系统服务,开发过程要兼顾地类优势,避免地类斑块过度破碎化;(4)CPI指数修订ESV系数方法,能够消除时间序列内物价变动因素,使得计算结果更贴近实际ESV,提高了多个时期生态系统服务评价的准确性和可比性。  相似文献   

13.
Spatial self‐organisation of ecosystems is the process by which large‐scale ordered spatial patterns emerge from disordered initial conditions through local feedbacks between organisms and their environment. Such process is considered important for ecosystem functioning, providing increased productivity, resistance and resilience against environmental change. Although spatial self‐organisation has been found for an increasing number of ecosystems, it has never been shown so far for aquatic river vegetation. Here we explore the existence of spatial self‐organisation of freshwater macrophyte patches in a typical lowland river (Belgium), showing that the underlying mechanisms for pattern formation are scale‐dependent feedbacks between plant growth, water flow and local river bed erosion and sedimentation. The mapping of vegetation patches showed that the frequency distribution of patch sizes is governed by a power‐law function, suggesting that the patches are self‐organised. Scale‐dependent feedbacks, likely to lead to this self‐organised pattern, were demonstrated with a mimic experiment. Both positive and negative feedbacks on plants were confirmed by a transplantation experiment. Placing vegetation patch mimics in the river showed experimentally that on a short range (within and behind the mimics) flow reduction and increased sedimentation occurred, while on a larger range (next to patches) the flow was accelerated and decreased sedimentation took place. By transplanting macrophytes within, next to and further away from existing patches, it was proven that the conditions within the patches favoured the survival and growth of transplants (i.e. short‐range positive feedback), while the conditions just next to patches led to decreased survival and growth (i.e. long‐range negative feedback).  相似文献   

14.
Both source-sink theory and extensions of optimal foraging theory ("balanced dispersal" theory) address dispersal and population dynamics in landscapes where habitat patches vary in quality. However, studying dispersal mechanisms empirically has proven difficult, and dispersal is rarely tied back to long-term spatial dynamics. We used a manipulable laboratory system consisting of bacteria and protozoa to investigate the ability of source-sink and optimal foraging theories to explain both dispersal and emergent spatial dynamics. Consistent with source-sink models and contrary to balanced dispersal models, there was a consistent net flux of protist individuals from high to low resource patches. However, unlike the simplest source-sink models, intermediate rates of dispersal led to highest abundances in low resource patches. Side experiments found strong density dependence in local population dynamics and differences in average protist body size in high and low resource patches. Parameterization and analysis of a two-patch model showed that high migration from high to low resource patches could have depressed population density in low resource patches, creating pseudosinks. The movement of individuals and biomass from sources to sinks (a form of ecosystem subsidy) resulted in the convergence of body size and population densities in sources and sinks. Our results indicate a need to carefully consider movement patterns and interaction with local dynamics in potential source-sink systems.  相似文献   

15.
We use microsatellite loci to examine genetic structure of the Florida scrub lizard (Sceloporus woodi) and test for the effects of landscape variables at the scale of neighboring patches. We evaluate ecological metrics of connectivity with genetics data, which to our knowledge is the first application of these particular metrics to landscape-level genetics studies in Florida scrub. Florida scrub is a highly threatened ecosystem in which habitat patches are remnants of a previously widespread xeric landscape. Analysis of mitochondrial DNA (mtDNA) has shown that landscape structure influenced the evolutionary history of the Florida scrub lizard (S. woodi) across its range. Our results concur with these mtDNA studies in documenting divergence between xeric ridge systems and also demonstrate divergence at very local scales. Both least-cost distance and pairwise isolation (a metric used in ecological studies that includes patch size, quality and a modified isolation index) were better predictors of genetic distance than Euclidean distance, indicating that mesic and hydric habitat influence spatial patterns in genetic variation. Our results support the need for focusing on spatial distribution of scrub habitat at the scale of neighboring patches, as well as regionally, in conservation management and restoration. Also, our study points to the value of integrating landscape ecology metrics into landscape genetics.  相似文献   

16.
生境破碎化对动物种群存活的影响   总被引:39,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

17.
Patterned vegetation is a characteristic feature of many dryland ecosystems. While plant densities on the ecosystem-wide scale are typically low, a spatial self-organisation principle leads to the occurrence of alternating patches of high biomass and patches of bare soil. Nevertheless, intraspecific competition dynamics other than competition for water over long spatial scales are commonly ignored in mathematical models for vegetation patterns. In this paper, I address the impact of local intraspecific competition on a modelling framework for banded vegetation patterns. Firstly, I show that in the context of a single-species model, neglecting local intraspecific competition leads to an overestimation of a patterned ecosystem’s resilience to increases in aridity. Secondly, in the context of a multispecies model, I argue that local intraspecific competition is a key element in the successful capture of species coexistence in model solutions representing a vegetation pattern. For both models, a detailed bifurcation analysis is presented to analyse the onset, existence and stability of patterns. Besides the strengths of local intraspecific competition, also the difference between two species has a significant impact on the bifurcation structure, providing crucial insights into the complex ecosystem dynamics. Predictions on future ecosystem dynamics presented in this paper, especially on pattern onset and pattern stability, can aid the development of conservation programs.  相似文献   

18.
湖南省城市群生态网络构建与优化   总被引:8,自引:1,他引:8  
大型生境斑块为区域生物多样性保护提供了重要的空间保障。然而,快速城市化使得大型生境斑块变得日益破碎化、岛屿化,连接性不断下降,且日益受到周边土地利用变化的强烈影响,已严重威胁着区域生物多样性的保护。通过生态廊道建立或修复破碎生境斑块之间的连接,将非常有利于生态网络生态服务功能的有效发挥。基于景观生态学和保护生物学的相关原理,以湖南省城市群为例,在RS和GIS技术的支撑下,采用最小费用路径和情景分析方法,定量模拟了研究区的潜在生态廊道,基于重力模型对重要生态廊道进行了识别与提取,并就消费面模型对潜在生态网络结果产生的影响进行了分析,在此基础上有针对性地提出了生态网络优化的对策。研究结果表明,林地和耕地是组成研究区生态网络的优势景观要素类型;不同生境斑块间的相互作用强度差异显著,总体上西高东低,南高北低;消费面模型能够在较大程度上影响到生态网络的分析结果,因而进行情景分析十分重要和必要。研究结果可为研究区生态网络的构建和优化提供科学依据,同时可为其他城市群区域生态网络的构建提供参考和借鉴。  相似文献   

19.
20.
Although remote sensing technology has been used to evaluate regional ecosystem health for a long time, it is still necessary to find a suitable index system to better evaluate ecosystem health. This study aims to improve the ecosystem health measurement ability of remote sensing technology. This research was carried out in Fuzhou under the traditional Vigor-Organization-Resilience (VOR) framework by optimizing and improving the construction method of sub-indexes. Sub-indexes were constructed using spectral index analysis, landscape theoretical ecology model and spatial measurement. Three remote sensing datasets were used (1996, 2008 and 2021) to carry out remote sensing diagnosis of regional ecosystem health in the Fuzhou administrative region. The main research findings and conclusions were as follows. A new comprehensive vigor index (CVI) was developed by the principal component analysis (PCA) based on the four indicators: fractional vegetation cover (FVC), global vegetation moisture index (GVMI), vegetation temperature condition index (VTCI), normalized differential build-up and bare soil index (NDBSI). A new organizational index was constructed based on the landscape index. Four types of indexes, namely landscape heterogeneity (LH), landscape connectivity (LC), the shape characteristics of forest patches (CS) and the connectivity of forest patches (CC) were used as the main factors for calculating the organizational index. A resilience index calculation framework was proposed based on the habitat quality model. The temporal and spatial characteristics of ecosystem health were evaluated and analyzed. The regional ecosystem health value of the whole region reduced gradually, with average values of 0.3521 (1996), 0.3445 (2008) and 0.3345 (2021) respectively. The average reduction rate was 0.0007 per year (1996–2021). The proposed remote sensing diagnosis method provides a complete framework for solving the problems of measuring the dynamic evolution process and characteristics of regional ecosystem health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号