首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New triterpene glycosides, ulososides C, (20S,22S,23R,24S)-3,22,23-trihydroxy-3-O-(-D-glucopyranosyl)-32-nor-24-methyllanost-8(9)-ene-30-oic acid, D, (20S,22S,23R,24S)-3,22,23-trihydroxy-3-O-(-D-N-acetylglucosaminopyranosyl)-32-nor-24-methyllanost-8(9)-ene-30-oic acid, and E, (20S,22S,23R,24S)-3,22,23-trihydroxy-3-O-(-D-glucuronopyranosyl-(1 2)--D-arabinopyranosyl-32-nor-24-methyllanost-8(9)-ene-30-oic acid, were isolated from an Ulosa sp. sponge. Their structures were determined by spectral methods and chemical transformations. Specific features of their structures are discussed.  相似文献   

2.
Sexual self-incompatibility in European pear (Pyrus communis L.) is controlled by a single locus (S-locus) encoding a polymorphic stylar ribonuclease (S-RNase) that is responsible for the female function in pollen–pistil recognition. In this study, genomic DNA sequences corresponding to five new S-RNase alleles (named S 20 , S 21 , S 22 , S 23 , and S 24 ) and to S m were characterized in European pear cultivars. Re-sequencing S q from ‘General Le Clerc’ showed this S-RNase to encode the same protein as S 12 . Based on these findings, a polymerase chain reaction (PCR)-based method was developed for the molecular typing of cultivars bearing 20 S-RNases (S 1 S 14 , S m , and S 20 S 24 ) using consensus and allele-specific primers. Genomic PCR with consensus primers amplified product sizes characteristic of the S-RNases S 1 , S 2 , S 4 , S 10 , S 13 , and S 20 . However, the allele groups S 3 /S 12 , S 6 /S 8 /S 11 /S 22 and S 5 /S 7 /S 9 /S 14 /S m /S 21 /S 23 /S 24 amplified PCR products of similar size. To discriminate between alleles within these groups, primers to specifically amplify each S-RNase were developed. Application of this approach in 19 cultivars with published S-alleles allowed re-evaluation of one of the alleles of ‘Passe Crassane,’ ‘Conference,’ and ‘Condo.’ Finally, this method was used to assign S-genotypes to 37 cultivars. Test crosses confirmed molecular results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, the S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead, the genotype dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. We previously determined that sour cherry has non-functional S-haplotypes for the S 1 -, S 6 - and S 13 -haplotypes that are also present in diploid sweet cherry (P. avium L.). The mutations underlying these non-functional S-haplotypes have been determined to be structural alterations of either the S-RNase or SFB. Based on these structural alterations we designed derived cleaved amplified polymorphic sequence (dCAPS) markers and S-haplotype specific primer pairs that took advantage of either the length polymorphisms between S-haplotypes, differential S-haplotype sequences, or differential restriction enzyme cut sites. These primer pairs can discriminate among the mutant and wild-type S-haplotypes thereby enabling the identification of the S-haplotypes present in a sour cherry individual. This information can be used to determine whether the individual is either SC or SI. In a sour cherry breeding program, the ability to discriminate between SI and SC individuals at the seedling stage so that SI individuals can be discarded prior to field planting, dramatically increases the program’s efficiency and cost-effectiveness.  相似文献   

4.
Cross-compatibility relationships in almond are controlled by a gametophytically expressed incompatibility system partly mediated by stylar RNases, of which 29 have been reported. To resolve possible synonyms and to provide data for phylogenetic analysis, 21 almond S-RNase alleles were cloned and sequenced from SP (signal peptide region) or C1 (first conserved region) to C5, except for the S 29 allele, which could be cloned only from SP to C1. Nineteen sequences (S 4 , S 6 , S 11 S 22 , S 25 S 29 ) were potentially new whereas S 10 and S 24 had previously been published but with different labels. The sequences for S 16 and S 17 were identical to that for S 1 , published previously; likewise, S 15 was identical to S 5 . In addition, S 4 and S 20 were identical, as were S 13 and S 19 . A revised version of the standard table of almond incompatibility genotypes is presented. Several alleles had AT or GA tandem repeats in their introns. Sequences of the 23 distinct newly cloned or already published alleles were aligned. Sliding windows analysis of Ka/Ks identified regions where positive selection may operate; in contrast to the Maloideae, most of the region from the beginning of C3 to the beginning of RC4 appeared not to be under positive selection. Phylogenetic analysis indicated four pairs of alleles had ‘bootstrap’ support > 80%: S 5 /S 10 , S 4 /S 8, S 11 /S 24 , and S 3 /S 6 . Various motifs up to 19 residues long occurred in at least two alleles, and their distributions were consistent with intragenic recombination, as were separate phylogenetic analyses of the 5′ and 3′ sections. Sequence comparison of phylogenetically related alleles indicated the significance of the region between RC4 and C5 in defining specificity.An erratum to this article can be found at  相似文献   

5.
Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele S f , which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele S f was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S 30 , the sequence of which showed it to be the wild-type of S f so that S f can be regarded as a stylar part mutant S 30 °. These findings indicate S f may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, ‘Patalina’, had a new self-compatibility allele lacking RNase activity, S n5 , which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.  相似文献   

6.
Multiple independent recruitments of the S-pollen component (always an F-box gene) during RNase-based gametophytic self-incompatibility evolution have recently been suggested. Therefore, different mechanisms could be used to achieve the rejection of incompatible pollen in different plant families. This hypothesis is, however, mainly based on the interpretation of phylogenetic analyses, using a small number of divergent nucleotide sequences. In this work we show, based on a large collection of F-box S-like sequences, that the inferred relationship of F-box S-pollen and F-box S-like sequences is dependent on the sequence alignment software and phylogenetic method used. Thus, at present, it is not possible to address the phylogenetic relationship of F-box S-pollen and S-like sequences from different plant families. In Petunia and Malus/Pyrus the putative S-pollen gene(s) show(s) variability patterns different than expected for an S-pollen gene, raising the question of false identification. Here we show that in Petunia, the unexpected features of the putative S-pollen gene are not incompatible with this gene’s being the S-pollen gene. On the other hand, it is very unlikely that the Pyrus SFBB-gamma gene is involved in specificity determination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The S locus and its flanking regions in the genus Prunus (Rosaceae) contain four pollen-expressed F-box genes. These genes contain the S locus F-box genes with low allelic sequence polymorphism genes 1, 2, and 3 (SLFL1, SLFL2, and SLFL3) as well as the putative pollen S gene, named the S haplotype-specific F-box protein gene (SFB). As much less information is available on the function of SLFLs than that of SFB, we analyzed the SLFLs of six S haplotypes of sweet cherry (Prunus avium) in this study. Genomic DNA blot analysis and the isolation of SLFL1 showed that the SLFL1 gene in a functional self-incompatible S 3 haplotype is deleted and only a partial sequence resembling SLFL1 is left in the S 3 locus region, suggesting that SLFL1 by itself is not directly involved in either the GSI reaction or pollen-tube growth. Genomic DNA blot analysis showed that there was no substantial modification or mutation in SLFL2 and SLFL3. A phylogenic analysis of F-box genes in the rosaceous S locus and its border regions showed that Prunus SLFLs were more closely related to maloid S locus F-box brothers than to Prunus SFBs. The functions of SLFLs and the evolution of self-incompatibility in Prunus are discussed based on these results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported appear in the DDBJ, EMBL, and GenBank Nucleotide Sequence Databases under the accession numbers, AB360339, AB360340, AB360341, and AB360342, for SLFL1-S 1 , SLFL1-S 2 , SLFL1-S 5 , and SLFL1-S 6 , respectively.  相似文献   

8.
The biotransformation of racemic 1-phenylethanol (30 mg) with plant cultured cells of basil (Ocimum basilicum cv. Purpurascens, 5 g wet wt) by shaking 120 rpm at 25°C for 7 days in the dark gave (R)-(+)-1-phenylethanol and acetophenone in 34 and 24% yields, respectively. The biotransformation can be applied to other 1-arylethanols and basil cells oxidized the (S)-alcohols to the corresponding ketones remaining the (R)-alcohols in excellent ee.  相似文献   

9.
We previously identified both self-incompatible and self-compatible plants in a natural population of self-incompatible Petunia axillaris subsp. axillaris, and found that all the self-compatible plants studied carried either SC1- or SC2-haplotype. Genetic crosses showed that SC2 was identical to S17 identified from another natural population of P. axillaris, except that its pollen function was defective, and that the pollen-part mutation in SC2 was tightly linked to the S-locus. Recent identification of the S-locus F-box gene (SLF) as the gene that controls pollen specificity in S-RNase-based self-incompatibility has prompted us to examine the molecular basis of this pollen-part mutation. We cloned and sequenced the S17-allele of SLF of P.axillaris, named PaSLF17, and found that SC2 SC2 plants contained extra restriction fragments that hybridized to PaSLF17 in addition to all of those observed in S17 S17 plants. Moreover, these additional fragments co-segregated with SC2. We used the SC2-specific restriction fragments as templates to clone an allele of PaSLF by PCR. To determine the identity of this allele, named PaSLFx, primers based on its sequence were used to amplify PaSLFalleles from genomic DNA of 40 S-homozygotes of P. axillaris, S1 S1 through S40 S40. Sequence comparison revealed that PaSLFx was completely identical with PaSLF19 obtained from S19 S19. We conclude that the S-locus of SC2 contained both S17-allele and the duplicated S19-allele of PaSLF. SC2 is the first naturally occurring pollen-part mutation of a solanaceous species that was shown to be associated with duplication of the pollen S. This finding lends support to the proposal, based on studies of irradiation-generated pollen-part mutants of solanaceous species, that duplication, but not deletion, of the pollen S, causes breakdown of pollen function.  相似文献   

10.
A genomic clone of the S11 allele from the self-incompatibility locus (S locus) in Solanum chacoense Bitt. has been isolated by cross-hybridization to the S. chacoense S13 allele and sequenced. The sequence of the S11 allele contains all the features expected for S genes of the Solanaceae, and S11 expression, as assessed by northern blots and RNA-PCR, was similar to that of other S. chacoense S alleles. The S11 protein sequence shares 95% identity with the phenotypically distinct S13 protein of S. chacoense and is the gametophytic S allele with the highest similarity to an existing allele so far discovered. Only 10 amino acid changes differentiate the mature proteins from these two alleles, which sets a new lower limit to the number of changes that can produce an altered S allele specificity. The amino acid substitutions are not clustered, suggesting that an accumulation of random point mutations can generate S allele diversity. The S11 intron is unusual in that it could be translated in frame with the coding sequence, thus suggesting an additional mechanism for the generation of new S alleles.  相似文献   

11.
In this study, stylar proteins of apple (Malus x domestica) which correlate with known intervarietal incompatibility relationships and have similar characteristics to the S-glycoproteins of Japanese pear (Pyrus serotina) were surveyed by two-dimensional gel electrophoresis (2D-PAGE). Varietal differences were detected in a group of glycoproteins having Mrs and pIs similar to those of the S-glycoproteins of Japanese pear. 2D-PAGE profiles of these glycoproteins were correlated with intervarietal incompatibility relationships. These glycoproteins reacted with antiserum raised against the S 4-glycoprotein of Japanese pear, a result suggesting that they may be the products of S-alleles in styles of apple. On the basis of the profiles of the putative S-glycoproteins, S-genotypes were proposed for each of the apple cultivars examined.  相似文献   

12.
Summary The number of identical S-alleles between two wild populations of B. campestris, one in Turkey, the other in Japan, that have been independent of one another for a long time was investigated. Diallel pollination tests between 38 S-allele homozygotes, i.e., 16 S-allele homozygotes from Turkey and 22 from Japan, revealed that these were 29 different S-alleles only 4 common ones. These S-alleles were differentiated by the iso-electric focusing (IEF) analysis of S-locus glycoproteins (SLGs) stained with an antiserum against SLG8. All identical S-alleles had the major SLG band at the same pI value without exception, even though they were collected from different populations. However, the number of minor bands of SLGs varied between the two populations; the S-alleles in Balcesme had generally fewer minor bands than those in Oguni. The 29 independent S-alleles were numbered from S 21 to S 49 according to the pI value of the major SLG band. The major bands whose pI values were 7.5–8.5 were most common. Blot-hybridization patterns of genomic DNA hybridized with SLG 8 cDNA were not always the same among the strains of identical S-alleles obtained from different populations. Because about 20% of the S-alleles were shared between the two populations, it can be inferred that more than hundreds of S-alleles have been accumulated by mutation in B. campestris throughout the world.  相似文献   

13.
The gametophytic self-incompatibility (GSI) system in Rosaceae has been proposed to be controlled by two genes located in the S-locusan S-RNase and a recently described pollen expressed S-haplotype specific F-box gene (SFB). However, in apricot (Prunus armeniaca L.) these genes had not been identified yet. We have sequenced 21kb in total of the S-locus region in 3 different apricot S-haplotypes. These fragments contain genes homologous to the S-RNase and F-box genes found in other Prunusspecies, preserving their basic gene structure features and defined amino acid domains. The physical distance between the F-boxand the S-RNase genes was determined exactly in the S 2-haplotype (2.9kb) and inferred approximately in the S 1-haplotype (< 49kb) confirming that these genes are linked. Sequence analysis of the 5 flanking regions indicates the presence of a conserved region upstream of the putative TATA box in the S-RNase gene. The three identified S-RNase alleles (S 1, S 2 and S 4) had a high allelic sequence diversity (75.3 amino acid identity), and the apricot F-box allelic variants (SFB1, SFB2 and SFB4) were also highly haplotype-specific (79.4 amino acid identity). Organ specific-expression was also studied, revealing that S 1- and S 2-RNases are expressed in style tissues, but not in pollen or leaves. In contrast, SFB 1 and SFB 2 are only expressed in pollen, but not in styles or leaves. Taken together, these results support these genes as candidates for the pistil and pollen S-determinants of GSI in apricot.  相似文献   

14.
Summary Allelic complexity is a key feature of self-incompatibility (S) loci in gametophytic plants. We describe in this report the allelic diversity and gene structure of the S locus in Solanum tuberosum revealed by the isolation and characterization of genomic and cDNA clones encoding S-associated major pistil proteins from three alleles (S 1, S r1, S 2). Genomic clones encoding the S1 and S2 proteins provide evidence for a simple gene structure: Two exons are separated by a small intron of 113 (S 1) and 117 by (S 2). Protein sequences deduced from cDNA clones encoding S1 and Sr1 proteins show 95% homology. 15 of the 25 residues that differ between these S 1and S r1alleles are clustered in a short hypervariable protein segment (amino acid positions 44–68), which corresponds in the genomic clones to DNA sequences flanking the single intron. In contrast, these alleles are only 66% homologous to the S 2allele, with the residues that differ between the alleles being scattered throughout the sequence. DNA crosshybridization experiments identify a minimum of three classes of potato S alleles: one class contains the alleles S 1, S r1and S 3, the second class S 2and an allele of the cultivar Roxy, and the third class contains at present only S 4. It is proposed that these classes reflect the origin of the S alleles from a few ancestral S sequence types.  相似文献   

15.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

16.
Summary Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross F1 hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.From reciprocal crosses between two first generation inbred (I1) plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual I1 plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ x S-allele-interaction types.Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24–48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between S alleles in pollen and stigma of the S-allele-heterozygous genotype.Use of the non-inbred Io generation parent as a known heterozygous S-allele genotype in crosses with its first generation selfed (I1) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among I1 plants.Identifying the heterozygous and both homozygous S-allele genotypes during the I1 generation facilitates, during subsequent inbred generations, strong selection for or against modifier genes that influence the intensity of self- and sib-incompatibility. Selection for strong self and sib incompatibility can be effective for both homozygous inbreds and also for the S-allele heterozygote, thus facilitating production of single-cross F1 hybrids and also of 3-and 4-way hybrids.Department of Plant Breeding and Biometry paper No. 690  相似文献   

17.
Sporophytic self-incompatibility (SSI) in the genus Ipomoea (Convolvulaceae) is controlled by a single polymorphic S locus. We have previously analyzed genomic sequences of an approximately 300 kb region spanning the S locus of the S 1 haplotype and characterized the genomic structure around this locus. Here, we further define the physical size of the S locus region by mapping recombination breakpoints, based on sequence analysis of PCR fragments amplified from the genomic DNA of recombinants. From the recombination analysis, the S locus of the S 1 haplotype was delimited to a 0.23 cM region of the linkage map, which corresponds to a maximum physical size of 212 kb. To analyze differences in genomic organization between S haplotypes, fosmid contigs spanning approximately 67 kb of the S 10 haplotype were sequenced. Comparison with the S 1 genomic sequence revealed that the S haplotype-specific divergent regions (SDRs) spanned 50.7 and 34.5 kb in the S 1 and S 10 haplotypes, respectively and that their flanking regions showed a high sequence similarity. In the sequenced region of the S 10 haplotype, five of the 12 predicted open reading frames (ORFs) were found to be located in the divergent region and showed co-linear organization of genes between the two S haplotypes. Based on the size of the SDRs, the physical size of the S locus was estimated to fall within the range 34–50 kb in Ipomoea.  相似文献   

18.
Gametophytic self-incompatibility (GSI) in sweet cherry is determined by a locus S with multiple alleles. In the style, the S-locus codifies for an allele-specific ribonuclease (S-RNase) that is involved in the rejection of pollen that carries the same S allele. In this work we report the cloning and genomic DNA sequence analysis including the 5 flanking regions of four S-RNases of sweet cherry (Prunus avium L., Rosaceae). DNA from the cultivars Ferrovia, Pico Colorado, Taleguera Brillante and Vittoria was amplified through PCR using primers designed in the conserved sequences of sweet cherry S-RNases. Two alleles were amplified for each cultivar and three of them correspond to three new S-alleles named S 23 , S 24 and S 25 present in 'Pico Colorado', 'Vittoria' and 'Taleguera Brillante' respectively. To confirm the identity of the amplified fragments, the genomic DNA of these three putative S-RNases and the allele S 12 amplified in the cultivar Ferrovia were cloned and sequenced. The nucleotide and deduced amino-acid sequences obtained contained the structural features of rosaceous S-RNases. The isolation of the 5-flanking sequences of these four S-RNases revealed a conserved putative TATA box and high similarity among them downstream from that sequence. However, similarity was low compared with the 5-flanking regions of S-RNases from the Maloideae. S 6 - and S 24 -RNase sequences are highly similar, and most amino-acid substitutions among these two RNases occur outside the rosaceous hypervariable region (RHV), but within another highly variable region. The confirmation of the different specificity of these two S-RNases would help elucidate which regions of the S-RNase sequences play a role in S-pollen specific recognition.Communicated by H.F. Linskens  相似文献   

19.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

20.
Summary S-alleles of self-incompatibility were isolated from a wild population of Brassica campestris growing at Balcesme, Turkey. Out of 88 plants observed, 73 were self-incompatible and 4 were self-compatible. In certain families, selfed progenies from a self-incompatible plant segregated into fewer than three incompatibility classes, which is consistent with a one-locus sporophytic genetic control of self-incompatibility. Out of 25 combinations of S-alleles tested, dominance interactions were observed in 6 of them on the pollen side and on 5 of them on the stigma side. The 35 S-homozygotes thus isolated consisted of 18 independent S-alleles. The number of S-alleles in this population was estimated to be more than 30. The S-locus glycoproteins (SLGs) corresponding to the respective S-alleles were identified by iso-electric focusing (IEF)-gel immunoblotting with a polyclonal antiserum against SLG8. SLGs in a stigma were generally composed of several bands, one major and a few minor ones, whose molecular weight was similar to each other, and the major and minor bands were heritable in correlation with each other. SDS-PAGE analysis of SLGs differentiated a few juxtaposed bands between 50 and 60 kDa, and the variations in these bands were considered to be due to differences in the number of polysaccharide residues. General features of the variation of S-genes and their SLGs between the populations in Balcesme, Turkey and Oguni, Japan, were comparatively similar to one another, despite the different surroundings and history of these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号