首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An 11.4-kbp region of genomic DNA containing the complete S10-spc operon was constructed by an integrative mapping technique with eight plasmid vectors carrying ribosomal protein sequences from onion yellows phytoplasma. Southern hybridization analysis indicated that phytoplasmal S10-spc is a single-copy operon. This is the first complete S10-spc operon of a phytoplasma to be reported, although only a part of six serial genes of the S10 operon is reported previously. The operon has a context of 5'-rps10, rpl3, rpl4, rpl23, rpl2, rps19, rpl22, rps3, rpl16, rpl29, rps17, rpl14, rpl24, rpl5, rps14, rps8, rpl6, rpl18, rps5, rpl30, rpl15, SecY-3', and is composed of 21 ribosomal protein subunit genes and a SecY protein translocase subunit gene. Resembling Bacillus, this operon contains an rpl30 gene that other mollicutes (Mycoplasma genitalium, M. pneumoniae, and M. pulmonis) lack. A phylogenetic tree based on the rps3 sequence showed that phytoplasmas are phylogenetically closer to acholeplasmas and bacillus than to mycoplasmas. In the S10-spc operon, translation may start from either a GTG codon or an ATG codon, and stop at a TGA codon, as has been reported for acholeplasmas and bacillus. However, in mycoplasmas, GTG was found as a start codon, and TGA was found not as a stop codon, but instead as a tryptophan codon. These data derived from the gene organization, and the genetic code deviation support the hypothesis that phytoplasmal genes resemble those of acholeplasmas and Bacillus more than those of other mollicutes.  相似文献   

3.
4.
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.  相似文献   

5.
The nucleotide sequence (25,320 base-pairs) of a part of the large single-copy region of chloroplast DNA from the liverwort Marchantia polymorpha was determined. This region encodes putative genes for four tRNAs, isoleucine tRNA(CAU), arginine tRNA(CCG), proline tRNA(UGG) and tryptophan tRNA(CCA); eight photosynthetic polypeptides, the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL), 51,000 Mr photosystem II chlorophyll alpha apoprotein (psbB), apocytochrome b-559 polypeptides (psbE and psbF), 10,000 Mr phosphoprotein (psbH), cytochrome f preprotein (petA), cytochrome b6 polypeptide (petB), and cytochrome b6/f complex subunit 4 polypeptide (petD); 13 ribosomal proteins (L2, L14, L16, L20, L22, L23, L33, S3, S8, S11, S12, S18 and S19); initiation factor 1 (infA); ribosome-associating polypeptide (secX); and alpha subunit of RNA polymerase (rpoA). Functionally related genes were located in several clusters in this region of the genome. There were two ribosomal protein gene clusters: rpl23-rpl2-rps19-rpl22-rps3-rpl16-+ ++rpl14-rps8-infA-secX-rps11-rpoA, with a gene arrangement similar to that of the Escherichia coli S10-spc-alpha operons, and the rps12'-rpl20-rps18-rpl33 cluster. There were gene clusters encoding photosynthesis components such as the psbB-psbH-petB-petD and the psbE-psbF clusters. Thirteen open reading frames, ranging in length from 31 to 434 amino acid residues, remain to be identified.  相似文献   

6.
7.
8.
9.
We describe the structure (3840 bp) of a novel Euglena gracilis chloroplast ribosomal protein operon that encodes the five genes rpl16-rpl14-rpl5-rps8-rpl36. The gene organization resembles the spc and the 3'-end of the S10 ribosomal protein operons of E. coli. The rpl5 is a new chloroplast gene not previously reported for any chloroplast genome to date and also not described as a nuclear-encoded, chloroplast protein gene. The operon contains at least 7 introns. We present evidence from primer extension analysis of chloroplast RNA for the correct in vivo splicing of five of the introns. Two of the introns within the rps8 gene flank an 8 bp exon, the smallest exon yet characterized in a chloroplast gene. Three introns resemble the classical group II introns of organelle genomes. The remaining 4 introns appear to be unique to the Euglena chloroplast DNA. They are uniform in size (95-109 nt), share common features with each other and are distinct from both group I and group II introns. We designate this new intron category as 'group III'.  相似文献   

10.
为从鼠尾草属植物中鉴别丹参品种,采用基因测序方法,用核糖体核酸内转录间隔区基因(nrDNA ITS),编码核蛋白体大亚基多肽L16的基因(rpl16)及叶绿体DNA上包含trnL以及trnL和trnF间隔区的区域基因(trnL-trnF)的序列,检测六种鼠尾草属新鲜植物.由于nrDNA ITS和rpl16突变率较高,可以做为6种鼠尾草的基源鉴定标记,依此设计了两对特异引物,从6种鼠尾草中鉴定出丹参(Salvia miltiorrhiza)和云南鼠尾草(S.yunnanensis).但trnL-trnF突变率太低,未能用于鉴别.商品干燥中药材因加工和储藏的方式致使DNA降解严重,基因测序法难于应用.  相似文献   

11.
The distribution of chloroplast ribosomal protein genes between the organelle DNA and the nuclear DNA is highly conserved in land plants, but a notable exception is rpl21. This gene has been found in the completely sequenced chloroplast genome of a lower plant but not in that of two higher plants. We describe the purification and characterization of the spinach chloroplast ribosomal protein L21 and the isolation and nucleotide sequence of a cDNA clone that encodes its cytoplasmic precursor. The mature protein, identified by NH2-terminal sequencing, has 201 residues (Mr 22,766) and is thus substantially larger than either its Escherichia coli (103 residues) or the lower plant homologue (116 residues). The extra length is in peptide extensions at both amino and carboxyl termini. The COOH-terminal extension is unusual in that it comprises seven Ala-Glu repeats, a feature not found in any other ribosomal proteins described so far. The cDNA clone also encodes a 55-residue long transit peptide (with a high proportion of the polar residues, threonine and serine), to target the L21 protein into chloroplasts. The identification of rpl21 as a nuclear gene in a higher plant (spinach) and chloroplast gene in a lower plant (liverwort) suggests an organelle-to-nucleus gene relocation during the evolution of the former.  相似文献   

12.
13.
14.
Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.  相似文献   

15.
Jeong HY  Cho GB  Han KY  Kim J  Han DM  Jahng KY  Chae KS 《Gene》2001,262(1-2):215-219
The rpl3 gene and the rpl37 gene for Aspergillus nidulans ribosomal protein L3 (RPL3) and RPL37, which were identified as located on chromosome I and chromosome III, respectively, were isolated from chromosome-specific cosmid libraries. The nucleotide sequences of both of the rpl3 gene and the rpl37 gene identified the ORFs of 392 amino acids and 92 amino acids, respectively. Both of the two genes were present in a single copy. The expression of both genes together with two other house-keeping genes, the rps16 gene for RPS16 and the gene for gamma-actin, was analyzed during sexual development. All four genes showed nearly identical expression patterns in that each gene expression reached its maximum after 2 h, decreased thereafter, and increased again after 30-40 h of induction of sexual development.  相似文献   

16.
17.
Based on DNA and amino acid comparisons with known genes and their products, a region of the Paramecium aurelia mitochondrial (mt) genome has been found to encode the following gene products: (1) photosystem II protein G (psbG); (2) a large open reading frame (ORF400) which is also found encoded in the chloroplast (cp) DNA of tobacco (as ORF393) and liverwort (as ORF392), and in the kinetoplast maxicircle DNA of Leishmania tarentolae (as ORFs 3 and 4); (3) ribosomal protein L2 (rpl2); (4) ribosomal protein S12 (rps12); (5) ribosomal protein S14 (rps14); and (6) NADH dehydrogenase subunit 2 (ndh2). All of these genes have been found in cp DNA, but the psbG gene has never been identified in a mt genome, and ribosomal protein genes have never been located in an animal or protozoan mitochondrion. The ndh2 gene has been found in both mitochondria and plastids. The Paramecium genes are among the most divergent of those sequenced to date. Two of the genes are encoded on the strand of DNA complementary to that encoding all other known Paramecium mt genes. No gene contains an identifiable intron. The rps12 and psbG genes are probably overlapping. It is not yet known whether these genes are transcribed or have functional gene products. The presence of these genes in the mt genome raises interesting questions concerning their evolutionary origin.  相似文献   

18.
Although it is well known that there is no long range colinearity in gene order in bacterial genomes, it is thought that there are several regions that are under strong structural constraints during evolution, in which gene order is extremely conserved. One such region is the str locus, containing the S10-spc-alpha operons. These operons contain genes coding for ribosomal proteins and for a number of housekeeping genes. We compared the organisation of these gene clusters in 111 sequenced prokaryotic genomes (99 bacterial and 12 archaeal genomes). We also compared the organisation to the phylogeny based on 16S ribosomal RNA gene sequences and the sequences of the ribosomal proteins L22, L16 and S14. Our data indicate that there is much variation in gene order and content in these gene clusters, both in bacterial as well as in archaeal genomes. Our data indicate that differential gene loss has occurred on multiple occasions during evolution. We also noted several discrepancies between phylogenetic trees based on 16S rRNA gene sequences and sequences of ribosomal proteins L16, L22 and S14, suggesting that horizontal gene transfer did play a significant role in the evolution of the S10-spc-alpha gene clusters.  相似文献   

19.
The nuclear gene rps1 coding for the spinach plastid ribosomal protein CS1 exhibits both a constitutive and leaf-specific expression pattern. In contrast to other chloroplast-related genes like rbcS and cab, the leaf induction of rps1 expression is light-independent. These unique features of rps1 expression provide good models to study the mechanisms regulating plastid development and differentiation in higher plants. We report on the identification of a spinach leaf nuclear factor, designated S1F, interacting with the rps1 promoter. The S1F binding site is conserved in the promoter region of many plastid-related genes, including rbcS, cab, and rpl21. A binding activity similar to S1F was detected in nuclear extract from dark-grown de-differentiated soybean suspension cells. Through site-specific mutagenesis and transient expression in soybean cell protoplasts, we show that the S1F binding site is a negative element down-regulating the promoter activity of rps1. A ligated tetramer of S1F site was able to repress activity of the cauliflower mosaic virus 35 S promoter extending the negative function of the S1F binding site on promoter activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号