首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The challenges for rechargeable lithium‐oxygen batteries of low practical capacity and poor round‐trip efficiency urgently demand effective cathode materials to overcome the limitations. However, the synergy between the multiple active materials is not well understood. Here, findings of the synergistic effect between electrospun zinc oxide (ZnO) nanofibers and graphene nanoribbons (GNRs) unzipped from carbon nanotubes (CNTs) as cathode materials in rechargeable lithium‐oxygen batteries are described. Furthermore, the overpotentials and discharge capacities are tuned by the surface defect states of ZnO nanofibers and Pt nanocrytals in GNRs. It is observed that the optimized zinc oxide nanofibers hybridized with GNRs achieved a high reversible capacity of 6300 mAh g‐1carbon and enhanced stable cyclability under specific 50% of full discharge capacities. This report demonstrates that the ZnO nanofibers with a high degree of defects and hydrophilicity of the surface may be a promising cathode component for rechargeable lithium‐oxygen batteries and the optimum synergy between ZnO nanofibers and GNRs can balance the discharge capacity and cycle life.  相似文献   

2.
Superior electrocatalytic activities and excellent electrochemical stabilities of inexpensive counter electrodes (CEs) are crucial to the large‐scale practical application of dye‐sensitized solar cells (DSSCs). Herein, an efficient strategy for fabricating nitrogen‐doped graphene nanoribbons (N‐GNRs) via chemical unzipping of carbon nanotubes coupled with nitrogen doping process is reported, where abundant edge sites are produced and fully exposed basal planes of GNRs are activated by the N atoms within GNRs backbone. Benefiting from such unique characteristics, when first applied as CEs for DSSCs with triiodide/iodide electrolyte, a power conversion efficiency of 8.57% is delivered, outperforming GNRs (8.01%) and being superb to that of Pt (7.84%), and outstanding electrochemical stabilities of N‐GNRs are also demonstrated. Density functional theory calculations reveal that the N species within GNRs matrix, especially the predominant quaternary ones, could remarkably decrease the ionization energy of GNRs, which is instrumental to transfer electrons rapidly from external circuit to triiodide, and reduce charge‐transfer resistance, thus contributing to the enhanced photovoltaic performance. The present work has an insight into the unique role of N species on GNRs to the triiodide reduction, and provides an efficient strategy for design of high‐efficiency carbon electrodes with fully exposed active sites in energy conversion/storage devices.  相似文献   

3.
4.
Motivated by the recent nanophotonic community, in this work, we address the behavior of quantized charge-density fluctuations of doped and gated semiconductor armchair-type graphene nanoribbons within the tight-binding model and the Green’s function technique. In particular, we study the behavior of frequency-dependent susceptibility, when the system is exposed to photons or electrons. Injecting electrons by doping or ejecting ones by gating lead to different treatments in response function. Doping offers new collective modes due to added states between the valence and conduction bands (provided by the density of states) corresponding to intraband transitions, while gating distributes intraband modes. The results show that both ribbon width and doping concentrations affect the intraband transitions in electro-optical devices. Another remarkable point is the strong sensitivity of intraband plasmons to the direction of incoming photons or electrons. We found that the susceptibility of doped nanoribbons vanishes at perpendicular angles due to the distribution of intraband modes.  相似文献   

5.
6.
Single‐handed twisted 4,4′‐biphenylene‐bridged polybissilsesquioxane tubular nanoribbons and single‐layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single‐layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent‐induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single‐handed twisted carbonaceous tubular nanoribbons and single‐layered nanoribbons with micropores in the walls were obtained. X‐ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single‐layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self‐assemblies to the inner surfaces of the 4,4′‐biphenylene‐bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. Chirality 27:809–815, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
8.
Graphene micro‐supercapacitors (MSCs) are an attractive energy storage technology for powering miniaturized portable electronics. Despite considerable advances in recent years, device fabrication typically requires conventional microfabrication techniques, limiting the translation to cost‐effective and high‐throughput production. To address this issue, we report here a self‐aligned printing process utilizing capillary action of liquid inks in microfluidic channels to realize scalable, high‐fidelity manufacturing of graphene MSCs. Microstructured ink receivers and capillary channels are imprinted on plastic substrates and filled by inkjet printing of functional materials into the receivers. The liquid inks move under capillary flow into the adjoining channels, allowing reliable patterning of electronic materials in complex structures with greatly relaxed printing tolerance. Leveraging this process with pristine graphene and ion gel inks, miniaturized all‐solid‐state graphene MSCs are demonstrated to concurrently achieve outstanding resolution (active footprint: <1 mm2, minimum feature size: 20 µm) and yield (44/44 devices), while maintaining a high specific capacitance (268 µF cm–2) and robust stability to extended cycling and bending, establishing an effective route to scale down device size while scaling up production throughput.  相似文献   

9.
To develop high‐power and high‐energy batteries with a long life remains a great challenge, even combining the benefits of metal (fast kinetics and high capacity) and carbon materials (robust structure). Among them, Al‐ion batteries based on aluminum anode and graphite carbon cathode have gained lots of interests as one of the most promising technologies. Here, it is demonstrated that the size of graphitic material in ab plane and c direction plays an important role in anion intercalation chemistry. Sharply decreasing the size of vertical dimension (c direction) strongly facilitates the kinetics and charge transfer of anions (de)intercalation. On the other hand, increasing the size of horizontal dimension (ab plane) contributes to improving the flexibility of graphitic materials, which results in raising the cycling stability. Meanwhile, chloroaluminate anions are reversibly intercalated into the interlayer of graphite materials, leading to the staging behaviors. In the end, an ultrafast Al‐ion battery with exceptional long life is achieved based on large‐sized few‐layer graphene as a cathode and aluminum metal as an anode.  相似文献   

10.
11.
3D printing is becoming an efficient approach to facilely and accurately fabricate diverse complex architectures with broad applications. However, suitable inks and 3D print favorable architectures with high electrochemical performances for energy storage are still being explored. Here, sulfur copolymer‐graphene architectures with well‐designed periodic microlattices are 3D printed as a cathode for Li‐S batteries using a suitable ink composed of sulfur particles, 1,3‐diisopropenylbenzene (DIB), and condensed graphene oxide dispersion. Using thermal treatment, elemental sulfur can be reacted with DIB to produce sulfur copolymer, which can partially suppress the dissolution of polysulfides. Moreover, graphene in the architecture can provide high electrical conductivity for whole electrode. Hence, 3D printed sulfur copolymer‐graphene architecture exhibits a high reversible capacity of 812.8 mA h g?1 and good cycle performance. Such a simple 3D printing approach can be further extended to construct many complex architectures for various energy storage devices.  相似文献   

12.
13.
Supercapacitors are known for their rapid energy charge–discharge properties, often ten to a hundred times faster than batteries. However, there is still a demand for supercapacitors with even faster charge–discharge characteristics to fulfill the requirements of emerging technologies. The power and rate capabilities of supercapacitors are highly dependent on the morphology of their electrode materials. An electrically conductive 3D porous structure possessing a high surface area for ions to access is ideal. Using a flash of light, a method to produce highly interconnected 3D graphene architectures with high surface area and good conductivity is developed. The flash converted graphene is synthesized by reducing freeze‐dried graphene oxide using an ordinary camera flash as a photothermal source. The flash converted graphene is used in coin cell supercapacitors to investigate its electrode materials properties. The electrodes are fabricated using either a precoating flash conversion or a postcoating flash conversion of graphene oxide. Both techniques produce supercapacitors possessing ultra‐high power (5–7 × 105 W kg?1). Furthermore, optimized supercapacitors retain >50% of their capacitance when operated at an ultrahigh current density up to 220 A g?1.  相似文献   

14.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

15.
16.
Portable electronic devices have become increasingly widespread. Because these devices cannot always be tethered to a central grid, powering them will require low‐cost energy harvesting technologies. As a response to this anticipated demand, this study demonstrates transparent organic solar cells fabricated on flexible substrates, including plastic and paper, using graphene as both the anode and cathode. Optical transmittance of up to 69% at 550 nm is achieved by combining the highly transparent graphene electrodes with organic polymers that primarily absorb in the near‐IR and near‐UV regimes. To address the challenge of transferring graphene onto organic layers as the top electrode, this study develops a room temperature dry‐transfer technique using ethylene‐vinyl‐acetate as an adhesion‐promoting interlayer. The power conversion efficiency achieved for flexible devices with graphene anode and cathode devices is 2.8%–3.8% at for optical transmittance of 54%–61% across the visible regime. These results demonstrate the versatility of graphene in optoelectronic applications and it is important step toward developing a practical power source for distributed wireless electrical systems.  相似文献   

17.
Synthesis of highly efficient nonprecious metal electrocatalysts for the oxygen reduction reaction (ORR) superior to platinum (Pt) is still a big challenge. Herein, a new highly active ORR electrocatalyst is reported based on graphene layers‐wrapped Fe/Fe5C2 nanoparticles supported on N‐doped graphene nanosheets (GL‐Fe/Fe5C2/NG) through simply annealing a mixture of bulk graphitic carbon nitride (g‐C3N4) and ferrocene. An interesting exfoliation–denitrogen mechanism underlying the conversion of bulk g‐C3N4 into N‐doped graphene nanosheets is revealed. Owing to the high graphitic degree, optimum N‐doping level and sufficient active sites from the graphene layers‐wrapped Fe/Fe5C2 nanoparticles, the as‐prepared GL‐Fe/Fe5C2/NG electrocatalyst obtained at 800 °C exhibits outstanding ORR activity with a 20 mV more positive half‐wave potential than the commercial Pt/C catalyst in 0.1 m KOH solution and a comparable onset potential of 0.98 V. This makes GL‐Fe/Fe5C2/NG an outstanding electrocatalyst for ORR in alkaline solution.  相似文献   

18.
19.
20.
Poor quality and insufficient productivity are two main obstacles for the practical application of graphene in electrochemical energy storage. Here, high‐quality crumpled graphene microflower (GmF) for high‐performance electrodes is designed. The GmF possesses four advantages simultaneously: highly crystallized defect‐free graphene layers, low stacking degree, sub‐millimeter continuous surface, and large productivity with low cost. When utilized as carbon host for sulfur cathode, the GmF‐sulfur hybrid delivers decent areal capacities of 5.2 mAh cm?2 at 0.1 C and 3.8 mAh cm?2 at 0.5 C. When utilized as cathode of Al‐ion battery, the GmF affords a high capacity of 100 mAh g?1 with 100% capacity retention after 5000 cycles and excellent rate capability from 0.1 to 20 A g?1. This facile and large‐scale producible GmF represents a meaningful high‐quality graphene powder for practical energy storage technology. Meanwhile, this unique high‐quality graphene design provides an effective route to improve electrochemical properties of graphene‐based electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号