首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

2.
Anatomy and ultrastructure of the floral nectary of Peganum harmala L. were studied using light and transmission electron microscopy. The floral nectary was visible as a glabrous, regularly five‐lobed circular disc encircling the base of the ovary. Anatomically, it comprised a single layered epidermis and 15–20 layers of small, subepidermal secretory cells overlying several layers of large, ground parenchyma cells. The floral nectary was supplied by phloem and both sieve tubes and companion cells were found adjacent to the ground parenchyma. Based on our ultrastructural observations, plastids of secretory cells during the early stages of development were rich in starch grains and/or osmiophilic plastoglobuli, but these disappeared as nectar secretion progressed. The nectar appeared to exude through the modified stomata along symplastic and apoplastic routes. The abundant plastids and mitochondria suggest an eccrine mechanism of nectar secretion in P. harmala.  相似文献   

3.
Floral nectary development and nectar secretion in three species of Passiflora were investigated with light and electron microscopy. The nectary ring results from the activity of an intercalary meristem. Increased starch deposition in the amyloplasts of the secretory cells parallels maturation of the nectary phloem. Large membrane-bound protein bodies are observed consistently in phloem parenchyma cells, but their function is presently unknown. The stored starch serves as the main source of nectar sugars at anthesis. Plastid envelope integrity is maintained during starch degradation, and there is no evidence of participation of endoplasmic reticulum or Golgi in the secretion of pre-nectar. It is concluded that in these starchy nectaries granulocrine secretion, commonly reported for floral nectaries, does not occur.  相似文献   

4.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

5.
Floral nectaries are a widespread trait in the Sapindaceae. However, until now only a few data on nectaries and their evolutionary shifts are available for most taxa. This research focuses on the anatomy and development of floral nectaries in two endemic species, Cardiospermum heringeri and C. integerrimum. The nectary consists of two horn-like lobes, located at the base of the androgynophore. Anatomically, it is characterized by three components: uniseriate epidermis, sub-epidermal secretory tissue and vascular tissue. The epidermis contains many nectarostomata involved in the exudation process. The secretory parenchyma is composed of small thin-walled cells, relatively lightly stained, and idioblasts containing oxalate druses. Vascular tissue supplying the nectary consists exclusively of phloem. From an early stage of development, the nectary lobes in both species are associated with the base of the posterior petals, but each organ originates independently of one another. These results plus additional morphological observations of nectary lobes in some species of Cardiospermum, Serjania, Paullinia and Urvillea were analyzed within the framework of phylogenetic knowledge.  相似文献   

6.
荆条花蜜腺发育解剖学研究   总被引:2,自引:0,他引:2  
荆条(Vitex chinensis Mill.)花蜜腺属于淀粉型子房蜜腺,呈圆筒状环绕于子房的基部。蜜腺外观上无特殊结构,表面有。由分泌表皮和泌蜜组织组成,包括分泌表皮、气孔器、泌蜜薄壁组织和维管束。密腺和子房壁起源相同。花蕾膨大期,泌蜜组织细胞中产生大液泡;露冠期,泌蜜组织中形成维管束;花蕾初放期,分泌表皮细胞分化形成气孔器,无气孔下室,淀粉粒的积累在此期达到高峰;盛花期,蜜腺中已无淀粉粒,密  相似文献   

7.
BACKGROUND AND AIMS: Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics. METHODS: For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples. KEY RESULTS: The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption. CONCLUSIONS: Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.  相似文献   

8.
《Flora》2014,209(5-6):233-243
Orchidaceae is one of the largest angiosperm families. Although extensively studied, reports of anatomy of secretory structures of orchids are relatively scarce. Rodriguezia venusta is an epiphytic orchid occurring in Brazil and Peru that has floral and extrafloral nectaries. This study describes the structure and the histochemistry of these secretory structures. Floral and extrafloral nectary samples were obtained from R. venusta plants that were collected in a gallery forest in the State of Bahia, Brazil, and grown in a greenhouse. Theses samples were fixed and processed according to routine procedures in plant anatomy and histochemistry or for scanning electron microscopy. The extrafloral nectaries occur on the edge and sub-edge of young leaves and at the basal portion of bracts that subtend the floral buds. They are structurally very similar, being formed by a nectary parenchyma and a simple epidermis with stomata (“non-structured nectaries”). The floral nectary is inserted at the floral receptacle fused with the labellum base, between this structure and the two inferior connate sepals. This nectary consists of an epidermis with numerous specific nectar secreting trichomes, a subnectary and a nectary parenchyma abundantly supplied by vascular terminations. Its structure is complex and distinct from other floral nectaries described for Orchidaceae.  相似文献   

9.
BACKGROUND AND AIMS: Although it was generally assumed that Maxillaria spp. do not produce nectar, in recent years, nectar has been reported for a number of these orchids. Nevertheless, our current understanding of nectary structure and nectar secretion in Maxillaria is based solely on M. coccinea (Jacq.) L.O. Williams ex Hodge, which, since it shows many features characteristic of ornithophilous flowers, is atypical of this largely entomophilous genus. The aim of the present paper is to describe, for the first time, nectar secretion in a presumed entomophilous species of Maxillaria. METHODS: The structure of the nectary of M. anceps Ames & C. Schweinf., nectar composition and the process of nectar secretion were investigated using light microscopy, scanning electron microscopy, transmission electron microscopy, histochemistry, refractometry and high performance liquid chromatography. KEY RESULTS AND CONCLUSIONS: Nectar appears as droplets that are exuded by modified stomata borne upon the labellar callus and collects upon the labellum and at the base of the column-foot. Although such stomata are known to occur in a number of angiosperm families, this is the first time for them to be observed in orchids. The callus consists largely of parenchyma with raphides and is supplied by eight to ten collateral bundles. This tissue, together with the single-layered epidermis, seemingly contains terpenoids. During the bud stage, the callus cells contain an organelle complement consistent with secretory cells whereas by day 4 of anthesis, much of the cell is occupied by a vacuole. The nectar is sucrose-dominant but also contains low concentrations of glucose, fructose, free amino acids and possibly terpenoids. The high sugar concentration (approx. 66 %) is consistent with melittophily and may indicate that, like the majority of Maxillaria spp., M. anceps is visited by stingless bees (Meliponini).  相似文献   

10.
Summary The extrafloral nectary ofAcacia terminalis is of the flat type and is located on the adaxial surface of the petiole of the bipinnate leaf. The secretory area is restricted to the base of the trough and no gaps or pores were detected by staining with vital dyes. Between the vascular bundles beneath the nectary and the surface cuticle there were three cell types. The cells of the flanking zone adjacent to the vascular bundles did not appear to be producing secretion whereas the cells of the glandular and secretory zones were secreting. The cells of the glandular zone were elongated whereas those of the surface secretory zone were spherical. Both had endoplasmic reticulum and Golgi bodies with secretory vesicles which were observed in close association with the plasmalemma. Secretion accumulated in the intercellular spaces of the glandular zone cells and forced the cells of the secretory zone apart. Symplastic contact was maintained in all cell types by plasmodesmata which were often associated with endoplasmic reticulum. Secretion accumulated beneath the cuticle which was distended but remained intact on the surface of the secretion.  相似文献   

11.
The structure of the floral nectaries of Cornus alba was studied using light microscopy as well as scanning and transmission electron microscopy. It was found that the nectary gland of white dogwood had the shape of a fleshy ring surrounding the base of the style of the inferior ovary. Nectar secretion occurs through slightly depressed stomata, evenly distributed in the epidermis of the nectary. The nectariferous tissue is composed of over a dozen layers of heterogeneously structured cells. Between groups of cells with a typical structure, characteristic for the secretory tissue, cells occur with degenerated content and a high degree of vacuolization. In the area of the nectary gland cells, no vascular tissue elements were observed. The nectary was irrigated by the vasculature of the flower receptacle.  相似文献   

12.
Surface features, anatomy, and ultrastructure of the floral nectary of Eccremocarpus scaber (Bignoniaceae), pollinated predominantly by the largest-known hummingbird (Patagona gigas gigas), were studied together with nectar sugar content and secretion rate. The annular disk nectary comprises epidermis, secretory and ground parenchyma with intercellular spaces, and branched vascular bundles terminating in the secretory parenchyma where only phloem is found. Amyloplasts and vacuoles increase in size throughout development, the latter becoming sites of organelle degradation. Transferlike cells in nectary phloem and P-proteinlike fibrillar material in phloem parenchyma were observed. Flowers produced around 32 μl of nectar (mostly after anthesis) with 11 mg of sugar composed of fructose, glucose, sucrose, and maltose in a ratio of 0.34:0.32:0.17:0.17. Morphological studies as well as the presence of maltose and glucose in nectar suggest storage of the originally phloem-derived sugars as starch with its subsequent hydrolysis. The low sucrose/hexose ratio (0.25) and high nectary secretion force (nectar per flower biomass) observed places E. scaber close to large-bodied bat-pollinated plants. A hypothesis based on nectar origin and nectar secretion is advanced to explain pollinator-correlated variation in sucrose/hexose ratio.  相似文献   

13.
Leaf glands of Diplopterys pubipetala were studied with light and electron microscopy. Aspects of their secretion, visitors and phenology were also recorded. Glands occur along the margin, at the apex and at the base of the leaf blade. All the glands begin secretion when the leaf is still very young, and secretion continues during leaf expansion. The highest proportion of young leaves coincides with the beginning of flowering. The glucose‐rich secretion is collected by Camponotus ants, which patrol the newly formed vegetative and reproductive branches. All the glands are sessile, partially set into the mesophyll, and present uniseriate epidermis subtended by nonvascularised parenchyma. The glands at the apex and base are larger and also consist of vascularised subjacent parenchyma. The cytoplasm of epidermal and parenchyma cells has abundant mitochondria, polymorphic plastids filled with oil droplets and a few starch grains. Golgi bodies and endoplasmic reticulum are more abundant in the epidermal cells. The parenchyma cells of the subjacent region contain chloroplasts and large vacuoles. Plasmodesmata connect all the nectary cells. The zinc iodide–osmium tetroxide (ZIO) method revealed differences in the population of organelles between epidermal cells, as well as between epidermal cells and parenchyma cells. Ultrastructural results indicate that leaf glands of Dpubipetala can be classified as mixed secretory glands. However, the secretion released by these glands is basically hydrophilic and composed primarily of sugars, hence these glands function as nectaries.  相似文献   

14.
The ultrastructure of the glandular trichomes and secretory ducts of Grindelia pulchella was studied. Plastids, mitochondria and endoplasmic reticulum are involved in the secretory process of both, trichomes and ducts. A special tissue with “transfer cells” is associated with the duct epithelial cells. The secretion is produced in the transfer cells and then is transferred to the duct epithelial cells where it accumulates in the vacuoles. The occurrence of cavities within the cell walls of the trichome cells and duct epithelial cells is described. The secretion is accumulated between the cell wall and the cuticle of these cells. When the cuticle is broken the secretion is released. We conclude that granulocrine secretion operates in this species.  相似文献   

15.
Petals in Ranunculales are nectariferous organs referred to as “nectary leaves” and show diversity in shape, color and structure due to various positions and structure of nectary tissue. Menispermaceae are in the core Ranunculales and have green and short nectary leaves, but the knowledge on structure and functions of the nectary leaves is limited. We use scanning electron microscopy, light microscopy and transmission electron microscopy to investigate nectary leaves structure, micro-morphology and ultrastructure in two species of Stephania in Menispermaceae. Our results show that secretory tissues present in the upper part of abaxial side of the nectary leaves and the specialized secretory epidermal cells are distinguished from other cells. In Stephania cepharantha, clusters of secreting epidermal cells are raised slightly above other cells to form some “bulges” (8–25 cells arranged in a cluster) and connected to distinct huge sieve tube elements. In contrast, in Stephania japonica, secretory epidermal cells are lower than non-secreting cells and result in many “well-like” structures (comprising 6–20 cells per “well”), and have no sieve tube element connection. Secretory epidermal cells have dense cytoplasm, large nucleus and abundant organelles. Nectar secretions are exuded via micro-channels or pores of cuticle on outer walls. The type of secretory tissue in Stephania is the variant of nectarioles.  相似文献   

16.
Extrafloral nectaries situated on the adaxial side of the petiolebase are differentiated into a long head, comprising subepithelialground tissue surrounded by a layer of elongated palisade-likeepithelial cells and a short stalk from the nectary meristem.Many ultrastructural changes occur in epithelial and subepithelialcells of the nectary, from the young to secretory stages, suchas an increase in the amount of cytoplasm rich in mitochondriawith well developed cristae, rough endoplasmic reticulum (rER),smooth endoplasmic reticulum (sER) tubules and Golgi bodies.Plasmalemma invaginations with secretory vesicles occur longthe radial walls. Substantial amounts of secretory materialaccumulate in the gap between the radial walls and subcuticularspace, probably carried by the secretory vesicles from the cytoplasmat the secretory stage. Before cessation of secretion the cytoplasmbecomes vesiculated and the volume of the vacuome increases.At the post secretory stage, cytolytic processes and death ofcells occur. The subepithelial cells attain their maturity priorto epithelial cells. Histochemical localization reveals thepresence of lipids, proteins and insoluble polysaccharides withinthe epithelial cells and in the secretory material depositedin the subcuticular space as well as the gap between the radialwalls of the epithelial cells and outside the cuticle. Fine structure, nectary, Plumeria rubra, granulocrine secretion  相似文献   

17.
Summary The floral nectary ofPisum sativum L. is situated on the receptacle at the base of the gynoecium. The gland receives phloem alone which departed the vascular bundles supplying the staminal column. Throughout the nectary, only the companion cells of the phloem exhibited wall ingrowths typical of transfer cells. Modified stomata on the nectary surface served as exits for nectar, but stomatal pores developed well before the commencement of secretion. Furthermore, stomatal pores on the nectary usually closed by occlusion, not by guard-cell movements. Pore occlusion was detected most frequently in post-secretory and secretory glands, and less commonly in pre-secretory nectaries. A quantitative stereological study revealed few changes in nectary fine structure between buds, flowers secreting nectar, and post-secretory flowers. Dissolution of abundant starch grains in plastids of subepidermal secretory cells when secretion commenced suggests that starch is a precursor of nectar carbohydrate production. Throughout nectary development, mitochondria were consistently the most plentiful organelle in both epidermal and subepidermal cells, and in addition to the relative paucity of dictyosomes, endoplasmic reticulum, and their associated vesicles, the evidence suggests that floral nectar secretion inP. sativum is an energy-requiring (eccrine) process, rather that granulocrine.Abbreviations ER endoplasmic reticulum - GA glutaraldehyde - SEM scanning electron microscopy  相似文献   

18.
Our microscopy studies describe the anatomy of extrafloral nectaries on the abaxial side of the basal part of every leaf stalks of Acacia mangium. The lens-like nectary expands with the development of the leafstalk, peaks at the stage at which the leafstalk itself has reached its mature size. The nectary is composed of numerous small parenchyma cells and a nectar cavity in which the nectar is pooled. Those small parenchyma cells are divided into nectariferous tissue and epithelial cells, which line the lumen of the nectar cavity, and secretes the nectar into the same. Each nectary is surrounded by several vascular bundles, which probably afford the nectar. In addition to the microscopic observation, the chemical constituents of the nectar are analyzed by NMR, and it mainly consists of sugars with 60 % sucrose, 25 % glucose and 15 % fructose.  相似文献   

19.
We investigated the morphology and structure of the floral nectary in 11 Neotropical genera belonging to the subfamilies Dodonaeoideae and Paullinioideae (Sapindaceae) from southern South America representing three tribes (Dodonaeaeae, Paullinieae, and Melicocceae), in relation to other floral traits in species with contrasting morphological flower characteristics. Nectary organization was analyzed under light, stereoscopic, and scanning electron microscopes; Diplokeleba floribunda N.E. Br. was also observed using transmission electron microscopy. Our comparative data may contribute to the understanding of floral nectary evolution and systematic value in this family. The nectaries were studied in both staminate and pistillate flowers. All the floral nectaries are typical of Sapindaceae: extrastaminal, receptacular, structured, and persistent. The anatomical analysis revealed a differentiated secretory parenchyma and an inner non-secretory parenchyma; the nectary is supplied by phloem traces and, less frequently, by phloem and xylem traces. Nectar is secreted through nectarostomata of anomocytic type. The anatomical analysis showed the absence of nectary in the three morphs of Dodonaea viscosa flowers. Nectary ultrastructure is described in D. floribunda. In this species, the change in nectary color is related to progressive accumulation of anthocyanins during the functional phase. We found relatively small variation in the nectary structural characteristics compared with large variation in nectary morphology. The latter aspect agreed with the main infrafamilial groupings revealed by recent phylogenetic studies, so it is of current valuable systematic importance for Sapindaceae. In representatives of Paullinieae, the reduction of the floral nectary to 4–2 posterior lobes should be interpreted as a derived character state.  相似文献   

20.
Nectar is the most common floral pollinator reward. In dichogamous species, floral nectar production rates can differ between sexual phases. We studied the structure of nectaries located on the stylopodium and nectar production in protandrous umbellifer Angelica sylvestris. Our study species produced nectar in both floral sexual phases. Nectar sugar concentration was low (on average 22 ± 11 %, mean ± SD) and the nectar hexose rich and composed of sucrose, glucose, fructose and a small amount of amino acids, including β-alanine, a non-protein amino acid. Although nectar composition and sugar concentration varied little between floral sexual phases, nectar production showed a threefold reduction during the stigma receptive period. This is in contrast to other studies of Apiaceae that have reported female-biased nectar production, but in the direction predicted by plant sexual selection theory, suggesting that in pollen-unlimited species, floral rewards mainly enhance male reproductive success. The structure of the nectary was similar at the two sexual stages investigated, and composed of a secretory epidermis and several layers of nectariferous and subsecretory parenchyma. The nectary cells were small, had large nuclei, numerous small vacuoles and dense, intensely staining cytoplasm with abundant endoplasmic reticulum, mitochondria and secretory vesicles. They contained abundant resin-like material that may potentially act as defence against microbes. Starch was rarely observed in the nectary cells, occurring predominantly at the female stage and mainly in guard and parenchyma cells in close proximity to stomata, and in subsecretory parenchyma. The main route of nectar release in A. sylvestris seems to be via modified stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号