首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 115 collection strains of Bacillus thuringiensis, belonging to various subspecies, have been studied for the presence of DNA restriction-modification systems. Restriction endonucleases of 13 strains have been isolated and characterized. No considerable correlations between the taxonomic positions of the bacteria and the specificities of the endonucleases isolated have been detected. It is concluded that the enzymes with identical specificities are present in both the crystalliferous and acrystalliferous strains of the same subspecies.  相似文献   

2.
A total of 115 collection strains of Bacillus thuringiensis, belonging to various subspecies, have been studied for the presence of DNA restriction–modification systems. Restriction endonucleases of 13 strains have been isolated and characterized. No considerable correlations between the taxonomic positions of the bacteria and the specificities of the endonucleases isolated have been detected. It is concluded that the enzymes with identical specificities are present in both the crystalliferous and acrystalliferous strains of the same subspecies.  相似文献   

3.
Two restriction endonucleases with new sequence specificities have been isolated from Acetobacter aceti IFO 3281 and Bacillus aneurinolyticus IAM 1077 and named AatII and BanII, respectively. Based on analysis of the sequences around the restriction sites, the recognition sequences and cleavage sites of these endonucleases were deduced as below: (formula; see text)  相似文献   

4.
Restriction endonucleases are resilient to alterations in their DNA-binding specificities. Structures of the BglII and MunI endonucleases bound to their palindromic DNA sites, which differ by only their outer base pairs from the recognition sequences of BamHI and EcoRI, respectively, have recently been determined. A comparison of these complexes reveals surprising differences and similarities in structure, and provides a basis for understanding the immutability of restriction endonucleases.  相似文献   

5.
Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.  相似文献   

6.
Homing endonucleases have become valuable tools for genome engineering. Their sequence recognition repertoires can be expanded by modifying their specificities or by creating chimeric proteins through domain swapping between two subdomains of different homing endonucleases. Here, we show that these two approaches can be combined to create engineered meganucleases with new specificities. We demonstrate the modularity of the chimeric DmoCre meganuclease previously described, by successfully assembling mutants with locally altered specificities affecting both I-DmoI and I-CreI subdomains in order to create active meganucleases with altered specificities. Moreover these new engineered DmoCre variants appear highly specific and present a low toxicity level, similar to I-SceI, and can induce efficient homologous recombination events in mammalian cells. The DmoCre based meganucleases can therefore offer new possibilities for various genome engineering applications.  相似文献   

7.
Homing endonucleases are highly specific enzymes, capable of recognizing and cleaving unique DNA sequences in complex genomes. Since such DNA cleavage events can result in targeted allele-inactivation and/or allele-replacement in vivo, the ability to engineer homing endonucleases matched to specific DNA sequences of interest would enable powerful and precise genome manipulations. We have taken a step-wise genetic approach in analyzing individual homing endonuclease I-CreI protein/DNA contacts, and describe here novel interactions at four distinct target site positions. Crystal structures of two mutant endonucleases reveal the molecular interactions responsible for their altered DNA target specificities. We also combine novel contacts to create an endonuclease with the predicted target specificity. These studies provide important insights into engineering homing endonucleases with novel target specificities, as well as into the evolution of DNA recognition by this fascinating family of proteins.  相似文献   

8.
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs.  相似文献   

9.
Homing endonucleases, endonucleases capable of recognizing long DNA sequences, have been shown to be a tool of choice for precise and efficient genome engineering. Consequently, the possibility to engineer novel endonucleases with tailored specificities is under strong investigation. In this report, we present a simple and efficient method to select meganucleases from libraries of variants, based on their cleavage properties. The method has the advantage of directly selecting for the ability to induce double-strand break induced homologous recombination in a eukaryotic environment. Model selections demonstrated high levels of enrichments. Moreover, this method compared favorably with phage display for enrichment of active mutants from a mutant library. This approach makes possible the exploration of large sequence spaces and thereby represents a valuable tool for genome engineering.  相似文献   

10.
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.  相似文献   

11.
Homing endonuclease structure and function   总被引:14,自引:0,他引:14  
Homing endonucleases are encoded by open reading frames that are embedded within group I, group II and archael introns, as well as inteins (intervening sequences that are spliced and excised post-translationally). These enzymes initiate transfer of those elements (and themselves) by generating strand breaks in cognate alleles that lack the intervening sequence, as well as in additional ectopic sites that broaden the range of intron and intein mobility. Homing endonucleases can be divided into several unique families that are remarkable in several respects: they display extremely high DNA-binding specificities which arise from long DNA target sites (14-40 bp), they are tolerant of a variety of sequence variations in these sites, and they display disparate DNA cleavage mechanisms. A significant number of homing endonucleases also act as maturases (highly specific cofactors for the RNA splicing reactions of their cognate introns). Of the known homing group I endonuclease families, two (HNH and His-Cys box enzymes) appear to be diverged from a common ancestral nuclease. While crystal structures of several representatives of the LAGLIDADG endonuclease family have been determined, only structures of single members of the HNH (I-HmuI), His-Cys box (I-PpoI) and GIY-YIG (I-TevI) families have been elucidated. These studies provide an important source of information for structure-function relationships in those families, and are the centerpiece of this review. Finally, homing endonucleases are significant targets for redesign and selection experiments, in hopes of generating novel DNA binding and cutting reagents for a variety of genomic applications.  相似文献   

12.
We describe the identification and characterization of novel homing endonucleases using genome database mining to identify putative target sites, followed by high throughput activity screening in a bacterial selection system. We characterized the substrate specificity and kinetics of these endonucleases by monitoring DNA cleavage events with deep sequencing. The endonuclease specificities revealed by these experiments can be partially recapitulated using 3D structure-based computational models. Analysis of these models together with genome sequence data provide insights into how alternative endonuclease specificities were generated during natural evolution.  相似文献   

13.
Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca2+) and catalytic ions (Mg2+). We have also analyzed the metal dependence of DNA cleavage using Mg2+ ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates.  相似文献   

14.
Three type II restriction endonucleases, MaeI, MaeII and MaeIII, with novel site specificities have been isolated and purified from the archaebacterium Methanococcus aeolicus PL-15/H. The recognition sequences of these enzymes are (formula: see text) with the sites of cleavage as indicated by the arrows. The sequences were confirmed by restriction and computer analyses on sequenced DNA's of plasmid pBR322, bacteriophages lambda and phi X174 and virus SV40.  相似文献   

15.
Endonucleases with substrate-sequence specificities, such as restriction enzymes, usually cleave small, defined nucleic acid molecules used in enzyme assays at one or only a few sites. The methods in common use for analysis of endonucleases are based on the Poisson distribution. A critical, but usually unstated, assumption of this distribution, however, is that there is a large number of possible reactive sites on each substrate molecule. Thus use of the Poisson distribution may introduce large errors into analysis of such assays. Here we develop a series of appropriate expressions for use in analyzing endonucleases with substrate-sequence specificities.  相似文献   

16.
We describe the partial purification and characterisation of five Type II restriction endonucleases from two strains of Herpetosiphon giganteus. One of the activities, HgiJII, was the first enzyme found that cleaves DNA at the family of related sequences 5'-G-R-G-C-Y/C-3'. This enzyme may be related to the enzyme HgiAI from a different strain of the same species, and which cleaves at the sites 5'-G-W-G-C-W/C-3'. We have shown that DNAs from the strains producing HgiAI and HgiJII are resistant to both of these restriction endonucleases. The remaining four enzymes described here share recognition and cleavage specificities with other restriction endonucleases. The evolution of Type II restriction-modification systems and their role in vivo are discussed.  相似文献   

17.
The last decade has seen the emergence of a universal method for precise and efficient genome engineering. This method relies on the use of sequence-specific endonucleases such as homing endonucleases. The structures of several of these proteins are known, allowing for site-directed mutagenesis of residues essential for DNA binding. Here, we show that a semi-rational approach can be used to derive hundreds of novel proteins from I-CreI, a homing endonuclease from the LAGLIDADG family. These novel endonucleases display a wide range of cleavage patterns in yeast and mammalian cells that in most cases are highly specific and distinct from I-CreI. Second, rules for protein/DNA interaction can be inferred from statistical analysis. Third, novel endonucleases can be combined to create heterodimeric protein species, thereby greatly enhancing the number of potential targets. These results describe a straightforward approach for engineering novel endonucleases with tailored specificities, while preserving the activity and specificity of natural homing endonucleases, and thereby deliver new tools for genome engineering.  相似文献   

18.
The site specificity of three DNA methylases BcnI, CfrI and Cfr10I was determined to be 5'Cm4C(C/G)GG, 5'PyGGm5CCPu and 5'Pum5CCGGPy, respectively. Using the modification methylases under investigation with known restriction endonucleases, fourteen new DNA cleavage specificities can be created. Some aspects of the use of restriction endonucleases in DNA methylation analysis are discussed.  相似文献   

19.
Homing endonucleases are enzymes that catalyze the highly sequence-specific cleavage of DNA. We have developed an in vivo selection in Escherichia coli that links cell survival with homing endonuclease-mediated DNA cleavage activity and sequence specificity. Using this selection, wild-type and mutant variants of three homing endonucleases were characterized without requiring protein purification and in vitro analysis. This selection system may facilitate the study of sequence-specific DNA cleaving enzymes, and selections based on this work may enable the evolution of homing endonucleases with novel activities or specificities.  相似文献   

20.
Three endonucleases from murine plasmacytoma cells that specifically nick DNA which was heavily irradiated with ultraviolet (UV) light were resolved by Sephacryl S-200 column chromatography. Two of these, UV endonucleases I and II, were purified extensively. UV endonuclease I appears to be a monomeric protein with a molecular mass of 43 kDa; UV endonuclease II has an S value of 2.9 S, with a corresponding molecular mass estimated at 28 kDa. Both enzymes act as a class I AP endonuclease, cleaving phosphodiester bonds via a beta-elimination mechanism, so as to form an unsaturated deoxyribose at the 3' terminus. Both have thymine glycol DNA glycosylase activity and their substrate specificities generally appear to be overlapping but not identical. UV endonuclease I acts on both supercoiled and relaxed DNAs, whereas II acts only on supercoiled DNA. Both enzymes are active in EDTA, but have different optima for salt, pH, and Triton X-100. Each enzyme is also present in cultured diploid human fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号