首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

4.
5.
6.
7.
7S particles from Xenopus oocytes were completely dissociated under non-reducing conditions. Studies using glycerol gradient centrifugation show that unlike the native 7S particle in which 5S RNA and TFIIIA co-sedimented in a fairly sharp peak, the RNA from the denatured 7S sedimented at the position corresponding to the 5S RNA and the TFIIIA sedimented as a wide peak between 6S and 12S. Thioredoxin from E. coli can catalyze the reactivation of the TFIIIA as measured by its ability to reform the 7S particle. The rate of reactivation with thioredoxin was significantly greater than with dithiothreitol. Oxidized thioredoxin was unable to reactivate TFIIIA. Pure TFIIIA can be inactivated and subsequently reactivated in the same way by formation of a cross-linked structure via intermolecular disulfide bridges.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The effects on TFIIIA binding affinity of a series of substitution mutations in the Xenopus laevis oocyte 5S RNA gene were quantified. These data indicate that TFIIIA binds specifically to 5S DNA by forming sequence-specific contacts with three discrete sites located within the classical A and C boxes and the intermediate element of the internal control region. Substitution of the nucleotide sequence at any of the three sites significantly reduces TFIIIA binding affinity, with a 100-fold reduction observed for substitutions in the box C subregion. These results are consistent with a direct interaction of TFIIIA with specific base pairs within the major groove of the DNA. A comparison of the TFIIIA binding data for the same mutations expressed in 5S RNA indicates that the protein does not make any strong sequence-specific contacts with the RNA. Although the protein footprinting sites on the 5S DNA and 5S RNA are coincident, nucleotide substitutions in 5S RNA which moderately reduce TFIIIA binding affinity do not correspond at all to the three specific TFIIIA interaction sites within the gene. The implications of these results for models which attempt to reconcile the DNA and RNA binding activities of TFIIIA by proposing a common structural motif for the two nucleic acids are discussed.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号