首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane proteins orchestrate key events required for participation of sperm in fertilisation. These proteins may be removed or altered due to the mechanical and dilution stressors associated with sex-sorting of sperm. Ram sperm were incubated with Hoechst 33342 and flow-sorted. Sex-selected (viable, orientated) and waste (separated into non-viable or non-orientated) sperm populations were collected, or sperm were not sorted. Sperm membrane proteins were extracted and characterised by one- and two-dimensional PAGE. Densiometric analysis of protein bands separated by one-dimensional PAGE showed proteins of 30 and 28 kDa as doublet bands on non-sorted sperm, and single bands on sex-sorted sperm, and the proportion of a 14 kDa protein was 3-fold higher in non-sorted compared to sorted sperm. Proteins in the 14 kDa band were identified by mass spectroscopy as a bovine Fibronectin type-2 protein (Fn-2), cytochrome oxidase 5a (Cox5a) and a sperm membrane associated protein (SLLP1). The abundance of these proteins in the two-dimensional gels was lowest in the sorted sperm population identified as viable during sorting (orientated and non-orientated sperm) and highest in the non-viable sperm population (P < 0.001). We concluded that the membrane protein profile was different for sex-sorted compared with non-sorted sperm, due to the selection of plasma membrane-intact cells in the flow-sorted population. This provided further evidence that sex-sorting selected a homogenous population of sperm with superior function to non-sorted sperm. Furthermore, this was apparently the first time sperm membrane acrosome associated protein was reported in ram sperm, and it was demonstrated that seminal plasma proteins remained on the sperm membrane after sex-sorting.  相似文献   

2.
125I-labeled oviductal fluid (ODF) proteins and antiserum to ODF were used to determine whether ODF proteins associate with the sperm membrane during in vitro capacitation. Luteal and nonluteal pools of ODF were obtained from oviduct catheters during the estrous cycle. Washed sperm (50 x 10(6) sperm/ml) were incubated up to 4 h in a protein-free modified Tyrode's medium (MTM), or MTM supplemented with 40% ODF, or 0.5 ng 125I-labeled ODF proteins. Solubilized sperm membrane proteins and incubation media containing ODF proteins were separated by gel electrophoresis. Membranes isolated from bovine sperm, previously incubated with ODF, adsorbed five 125I-proteins: A doublet at 85-95 kDa, and others at 24, 34, 53, and 66 kDa. The amount of 66 kDA 125I-protein associated with the sperm decreased during the incubation, whereas the amount of 85 to 95-kDa protein did not. Western blot analyses also detected the presence of ODF proteins (53, 66, 85-95, and 116 kDa) in solubilized membranes from sperm incubated in ODF. The 85 to 95-kDa protein in ODF decreased in apparent molecular weight by 5 kDa when associated with the sperm membrane. At 53 kDa, ODF proteins which associated with sperm were transformed from two to three separate proteins. These studies indicate that the surface of sperm is modified by adsorption of ODF proteins to the membrane during in vitro capacitation.  相似文献   

3.
The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca2+ and Na+ influx and K+ and H+ efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba2+, and has a PK+/PNa+ selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization.  相似文献   

4.
The sperm of the mussel Mytilus had hydrolytic activities against substrates for aminopeptidase. Acrosome reaction (AR) was suppressed in the presence of aminopeptidase substrate, Phe-4-methylcoumaryl-7-amide (MCA), and an aminopeptidase inhibitor, bestatin. Treatment of sperm with phosphatidylinositol-specific phospholipase C (PI-PLC) released aminopeptidase activity from sperm and suppressed AR. These results suggest that the enzyme is located on the sperm surface via glycosylphosphatidylinositol (GPI)-anchor and is involved in the AR. Immunoblot analysis showed that tyrosine residues of 40, 59, 68, and 72 kDa proteins were phosphorylated during induction of the AR. The 40 kDa protein was also recognized by anti-c-Src antibody by immunoblotting. The tyrosine phosphorylation of these proteins was inhibited when sperm were inseminated in the presence of Phe-MCA, and by PI-PLC treatment. Treatment of sperm with tyrosine kinase activator, 9,10-dimethyl-1,2-benzanthracene, induced AR, and its inhibitor, genistein, suppressed AR. These results suggest that tyrosine phosphorylation of 40, 59, 68, and 72 kDa proteins, induced by the interaction of GPI-anchored aminopeptidase with oocyte surface, triggers AR in Mytilus sperm.  相似文献   

5.
Sperm must undergo the acrosome reaction (AR) in order to fertilize the egg. In sea urchins, this reaction is triggered by the egg jelly (EJ) which, upon binding to its sperm receptor, induces increases in the ion permeability of the plasma membrane and changes in protein phosphorylation. Here, we demonstrated that the sperm expresses ROCK (∼135 kDa), which is a serine/threonine protein kinase. ROCK localized, as RhoGTPase (Rho), in the acrosomal region, midpiece and flagellum. H-1152, a ROCK antagonist, inhibited the two cellular processes defining the AR: the acrosomal exocytosis and the actin polymerization. The ionophores nigericin and A23187 reversed the AR inhibition induced by H-1152, suggesting that ROCK functions at the level of the EJ-induced ion fluxes. Accordingly, H-1152 blocked 70% the intracellular alkalinization induced by EJ. These results indicate that EJ activates a Na+-H+ exchanger (NHE) in the sperm through a Rho/ROCK-dependent signaling pathway that culminates in the AR.  相似文献   

6.
Heng Ping Xu  T. H. Tsao 《Protoplasma》1997,198(3-4):125-129
Summary After purifying plasma membranes from isolated maize sperm cells by aqueous polymer two-phase partition, peripheral and integral proteins were solubilized from the plasma membrane with Triton X-114 and separated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Silver staining revealed 10 bands (19–68 kDa) of peripheral membrane proteins and about 40 bands (12–120 kDa) of integral proteins. Peroxidase-conjugated Con A was used to detect the surface glycopeptides. It was found that Con A particularly stained 8 peripheral polypeptide bands, including 68, 66, 55, 51,48, 44, 36, and 32 kDa, and 6 integral polypeptide bands, 68, 51, 48, 44, 38, and 34 kDa. These bands differed from those of somatic samples. Staining specificity was demonstrated by the control in the presence of competing inhibitory sugar. The above result indicates the existence of mannosyl and glucosyl residues in the surface glycoproteins of maize sperm cells. The prominent peripheral 68 kDa polypeptide was further separated into 4 spots by isoelectric focusing and sodium dodecyl sulfate two-dimensional (IEF-SDS 2-D) electrophoresis, showing pI values from 5.5 to 5.8. Three prominent glycopeptides (68, 48, and 32 kDa) were localized on the plasma membrane of maize sperm cells via the fluorescein isothiocyanate (FITC) technique. About 25% of sperm cells showed an intense positive reaction in each immunological labelling. The results agree with our previous labelling of the surface of isolated viable maize sperm cells with Con A-FITC.Abbreviations FITC fluorescein isothiocyanate - Con A Canavalia ensiformis agglutinin - HRP horseradish peroxidase - RCA Ricinus communis agglutinin - WGA Triticum vulgaris agglutinin  相似文献   

7.
Four porcine sperm plasma membrane proteins were previously identified as putative ligands for the oocyte plasma membrane. The present study examined the binding of these proteins and two additional porcine sperm membrane proteins to oocytes from sheep, mice and hamsters as a first step in assessing potential conservation of these putative sperm ligands across species and across mammalian orders. Plasma membrane vesicles were isolated from porcine sperm, solubilised, and the proteins separated by one-dimensional gel electrophoresis. The 7, 27, 39 and 62 kDa porcine sperm protein bands demonstrating predominant binding of the porcine oocyte plasma membrane on ligand blots, a 90 kDa protein band demonstrating minor binding, and a 97 kDa protein band that did not bind the oocyte plasma membrane probe were electroeluted. Proteins were biotinylated, and incubated with zona-free oocytes. Bound biotinylated protein was labelled with fluorescent avidin and the oocytes examined with a confocal microscope. The 7 kDa, 27 kDa and the 39 kDa proteins bound to the sheep oocytes but not to a majority of the hamster or mouse oocytes. The 62 kDa protein bound to sheep oocytes and mouse oocytes but not to a majority of the hamster oocytes. The 90 kDa protein bound to oocytes from all three species. The 97 kDa protein, which did not recognise the porcine oocyte probe on a Western ligand blot, did not bind to oocytes from any species and served as a negative control. These observations are consistent with significant conservation of molecule and function among species within the same mammalian order. Hence, one species may be a good model for other species from the same order. Only limited conservation of binding activity of porcine sperm plasma membrane proteins to rodent oocytes was observed, suggesting a greater divergence either in molecular structure or in function among species from different orders.  相似文献   

8.
Our previous findings demonstrate that some oviductal secretion proteins bind to gametes and affect sperm physiology and gamete interaction. One of these proteins possesses an estimated molecular weight of 14 kDa. The objective of this study was to isolate and identify this 14 kDa protein, to localize it in the human oviduct, to detect gamete binding sites for the protein, and to evaluate its effects on sperm capacitation parameters and gamete interaction. Explants from the human oviductal tissues of premenopausal women were cultured in the presence of [35S]-Methionine-proteins ([35S]-Met-proteins). De novo synthesized secreted [35S]-Met-proteins were isolated from the culture media by affinity chromatography using their sperm membrane binding ability and analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using liquid chromatography-tandem mass spectrometry peptide sequencing, human S100 A9 was identified as one of the isolated proteins from the 14 kDa protein band. S100 A9 was detected in oviduct epithelium and oviduct secretion using immunohistochemistry and a Western blot. S100 A9 binding to human oocytes and spermatozoa was assessed by indirect immunofluorescence. The acrosome reaction (AR) affected S100 A9 ability to bind sperm cells. The presence of S100 A9 significantly increased both the induced AR and the sperm protein tyrosine phosphorylation, with respect to controls. However, the protein did not affect sperm-zona pellucida interaction. Results indicate that S100 A9 is present in the human oviduct and that it modulates parameters of sperm capacitation in vitro. Hence, the protein might contribute to the regulation of the reproductive process in the oviductal microenvironment.  相似文献   

9.
In the initial stage of ascidian fertilization sequential sperm–egg coat interactions assure successful species-specific fertilization. Sperm recognize, bind to, and then penetrate the egg investment that consists of follicle cells (FC) and an acellular vitelline coat (VC). To identify plasma proteins that recognize the egg coat, a membrane fraction was prepared from Phallusia mammillata sperm using nitrogen cavitation followed by three centrifugation steps. The purity of the membrane fractions was assessed by transmission electron microscopy and marker enzymes. Comparison of the electrophoretic pattern of sperm extracellular membrane domains labeled by radio-iodination or biotinylation and recorded by autoradiography or enhanced chemiluminescence, respectively, showed the non-radioactive procedure to be a convenient and efficient method. Isolated sperm membrane components were found to inhibit fertilization in a concentration-dependent manner and to bind mainly to the FC. Eggs were used as an affinity matrix to determine which of the solubilized sperm membrane proteins possess egg-binding activity. Three biotinylated proteins (66kDa, 120kDa and 140kDa) were found to bind to the VC. Assays probing heterospecific binding to Ascidia mentula eggs revealed that the 120kDa protein possesses species-specific binding activity. Thus, the current data suggest the 120 kDa sperm membrane protein as a candidate adhesion molecule with a possible role in gamete binding and species-specific recognition in P. mammillata .  相似文献   

10.
Using NO specific probe (MNIP-Cu), rapid nitric oxide (NO) accumulation as a response to auxin (IAA) treatment has been observed in the protoplasts from the hypocotyls of sunflower seedlings (Helianthus annuus L.). Incubation of protoplasts in presence of NPA (auxin efflux blocker) and PTIO (NO scavenger) leads to significant reduction in NO accumulation, indicating that NO signals represent an early signaling event during auxin-induced response. A surge in NO production has also been demonstrated in whole hypocotyl explants showing adventitious root (AR) development. Evidence of tyrosine nitration of cytosolic proteins as a consequence of NO accumulation has been provided by western blot analysis and immunolocalization in the sections of AR producing hypocotyl segments. Most abundant anti-nitrotyrosine labeling is evident in proteins ranging from 25–80 kDa. Tyrosine nitration of a particular protein (25 kDa) is completely absent in presence of NPA (which suppresses AR formation). Similar lack of tyrosine nitration of this protein is also evident in other conditions which do not allow AR differentiation. Immunofluorescent localization experiments have revealed that non-inductive treatments (such as PTIO) for AR develpoment from hypocotyl segments coincide with symplastic and apoplastic localization of tyrosine nitrated proteins in the xylem elements, in contrast with negligible (and mainly apoplastic) nitration of proteins in the interfascicular cells and phloem elements. Application of NPA does not affect tyrosine nitration of proteins even in the presence of an external source of NO (SNP). Tyrosine nitrated proteins are abundant around the nuclei in the actively dividing cells of the root primordium. Thus, NO-modulated rapid response to IAA treatment through differential distribution of tyrosine nitrated proteins is evident as an inherent aspect of the AR development.  相似文献   

11.
Sperm acrosome reaction (AR) is a prerequisite step for in vivo fertilization. In the vicinity of the oocyte, zona protein(s) (ZP) and progesterone (P4), a component of follicular fluid, are proven to be responsible for physiological AR induction. In the present study, a thorough analysis of the role of the progesterone receptor (PR) in this processing including in vitro physiological studies and biochemical isolation and characterization of the receptor protein was conducted. Following capacitation for 0, 2, 4 and 6h, pooled fertile boar semen samples (n=6) with >70% sperm motility were labeled with P4-BSA-FITC (100 microg/ml) to detect the activation of PR. Parallel sperm samples were treated with P4 (10 microg/ml) for 20 min to test AR inducing efficiency at different time points. To compare the ability of ZP and P4 to induce AR, spermatozoa capacitated in a modified medium supplemented with 1mg/ml heparin for 4h, were then treated with heat solubilized ZP (150 microg/ml), P4 (10 microg/ml) or ZP+P4 for 20 min. FITC-peanut agglutinin staining was applied to observe the disrupt acrosomal morphology. A purification protocol for crude boar sperm membrane proteins was developed based on ligand-receptor affinity chromatography procedures. The PR proteins were then identified by using mAb C262 raised against intracellular PR, combined with second antibody (SDS-PAGE, Western blotting). Their N-terminal amino acid sequence was determined. The amount of PR-activated spermatozoa was enhanced with time (onset: 27+/-5%, 2h: 41+/-4%, 4h: 49+/-3% and 6h: 52+/-4%, mean+/-S.E., n=6) as evidenced by increasing percentage of spermatozoa with completed cap fluorescent staining. In parallel sperm samples, percentages of AR induced by P4 were 9+/-2, 14+/-2, 18+/-2, and 24+/-2%, respectively. In solvent control at all time points, less than 10% spermatozoa had undergone AR. Capacitation for 4h or greater time periods resulted in optimal percentage of PR-activated and acrosome-reacted spermatozoa. After sperm incubation in heparin-medium, ZP+P4 treatment induced greater amounts of AR than either P4 or ZP alone (13+/-1% compared with 8+/-1 and 10+/-1%, P<0.01). Inducing capacity of P4 was comparable to that of ZP. The molecule weights of two apparent PR molecular masses were detected to be at Mr 74 kDa and Mr 63 kDa. N-terminal amino acid sequence of 74 kDa protein was XPXNIVLIFADXLXY, which had 78% homology to arylsulfatase A and 88% homology to 72 kDa protein from boar spermatozoa. The activation of PR is associated with the capacitating process and that appears to be required for P4-induced AR. P4 and ZP appear to be equally capable of independently inducing the AR but lack synergetic or additive effects in this induction process. Both might represent alternative pathways thus resulting in alternative systems for induction of the prerequisite acrosomal exocytosis (supported by NSC 90-2313-B-005-114; 91-2313-B-005-131).  相似文献   

12.
The objective was to determine the effects of oviductal proteins on sperm function. Abbatoir-derived buffalo oviducts were flushed with PBS; the fluid recovered (protein concentration, 2.3 mg/mL; average of 3.5 mg protein/oviduct) was centrifuged, dialyzed, and clarified, and the supernatant applied to a Heparin-Sepharose affinity column. Unbound fractions were collected and bound proteins were separately eluted (with elution buffer). Eight distinct protein bands (from 12 to 177 kDa) in the H-unbound fraction and 15 distinct protein bands (from 12 to 165 kDa) in the H-bound fraction were detected in SDS-PAGE. Semen from four buffalo bulls was divided into three parts: Parts 1 and 2 were treated with the heparin binding (H-bound) and non-heparin binding (H-unbound) oviductal proteins, respectively, whereas Part 3 remained as an untreated control. Equilibrated and frozen-thawed semen was assessed for motility, viability, intact acrosome percentage, mucus penetration distance, and hypo-osmotic swelling test. The H-bound oviductal fluid proteins enhanced (P<0.05) the proportion of sperm that were progressively motile, alive, had an intact acrosome and functional plasma membrane (hypo-osmotic swelling test), as well as the distance covered in the cervical mucus sperm penetration test during cryopreservation. Addition of the H-unbound oviductal protein fraction did not increase sperm motility and penetration distance but increased (P<0.05) the proportion of sperm that were live, had an intact acrosome, and functional plasma membrane (hypo-osmotic swelling test). We concluded that the H-bound fraction of buffalo oviductal fluid protein(s) maintained sperm motility, viability and membrane integrity during cryopreservation, whereas the H-unbound proteins maintained sperm viability and membrane integrity.  相似文献   

13.
In this study, we aimed to detect morphological and biochemical changes in developing germ cells (Gc), testicular sperm (Tsp), and spawned sperm (Ssp) using capacitation-associated characteristics. Gradual changes in the profiles of two membrane proteins, namely NaCl- and detergent-extractable proteins, were observed as compared Gc with Tsp and Tsp with Ssp. These membrane modifications were accomplished mostly through the introduction of new protein sets, both peripheral and integral, into Tsp and Ssp membranes. Activation of serine proteases, particularly in Ssp detergent-extracted proteins with the molecular masses of 38-130 kDa was evident and marked a major difference between Ssp and Tsp. An increase in the level of tyrosine phosphorylation of the proteins ranging from 15 to 20 kDa was noted in Tsp and remained constant in Ssp. Specifically, these three capacitation-associated characteristics could be detected in Ssp, possessing full fertilizing capacity. The lack of an activated proteolytic activity in Tsp resulted in a delayed fertilization, but not affected fertilizing ability. We believe that these characteristics should be advantageous in predicting abalone sperm fertilizing capability, particularly in cases when isolated germ cells or purified Tsp are used in place of spawned sperm in abalone aquaculture.  相似文献   

14.
3-Quinuclidinyl benzilate (QNB), a potent antagonist of muscarinic acetylcholine receptors, has been demonstrated to inhibit specifically the zona pellucida (ZP)-inducud acrosome reaction (AR) in mouse sperm (Florman and Storey, 1982; Dev Biol 91:121–130). In this study we describe the solubilization and partial purification of the mouse sperm QNB binding activity which may represent a component of the putative receptor complex for ZP on the sperm plasma membrane. Sperm membranes were isolated from cell homogenates of washed, capacitated, epididymal mouse sperm. Scatchard plots of QNB binding to these membranes indicated a single class of binding sites with KD = 7.2 nM and Bmax = 8700 sites/cell. These binding characteristics are similar to those seen with QNB binding to whole cells (Florman and Storey, 1982, J Androl 3:157–164). Sperm membranes were solubilized using 1% digitonin/0.2% cholate, and the resultant detergent-soluble fraction possessed QNB binding activity similar to that of intact membranes. The detergent-soluble fraction maintained intact ZP receptor(s)–G protein coupling in that treatment of this fraction with either ZP or mastoparan resulted in a 35% or 65% increase in specific GTPγS binding, respectively. The solubilized membrane preparation was fractionated by gel permeation HPLC. A majority of specific QNB binding activity was confined to one HPLC fraction. Analysis of this fraction by SDS–PAGE revealed a complex of approximately 5 proteins unique to this fraction. The most prominent protein had a Mr of 72 kDa, which is within the Mr range for muscarinic receptors. A protein with Mr = 41 kDa was also present within this fraction. Subsequent pertussis toxin (PTX)-catalyzed ADP-ribosylation of this fraction revealed this protein to be the α subunit of the Gi class of G proteins. Although the QNB binding activity could not be positively identified, we propose that it is contained in one or more of the proteins unique to this fraction and that these proteins, including Gi, may act as part of a sperm receptor complex for the ZP. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

16.
Carbohydrate-binding proteins are thought to be involved in a myriad of sperm functions including sperm-oviductal and sperm-zona interactions. Recent studies in our laboratory have characterized galactose-binding proteins on equine spermatozoa as possible candidate molecules for sperm adhesion to oviduct epithelial cells. In the current study, equine sperm membrane proteins were subjected to galactose-affinity chromatography, and bound proteins were eluted with excess galactose in a calcium-free buffer. The eluted fraction recovered after galactose-affinity chromatography was used for generation of a polyclonal antibody which was immobilized on an affinity column to recover a purified protein from equine sperm extracts. Several protein bands of approximately 70, 25, and 20-18 kDa were detected with a major band at 25k Da on immunoblots which was subjected to N-terminal amino acid sequencing. These galactose binding proteins (GBP) were specific to sperm and testis and were absent in all the somatic tissues tested. Based upon immunocytochemistry, GBP were localized over the sperm head. In noncapacitated sperm, fluorescent labeling was observed over the rostral sperm head as well as the postacrosomal area; whereas in capacitated sperm, the labeling was localized primarily in the equatorial segment. Immunohistochemistry of equine testis demonstrated abundant staining in the adluminal region of the seminiferous tubules corresponding to round spermatids. In summary, this study demonstrates the presence of testis- and sperm-specific galactose binding proteins in the horse. The function of these proteins remains to be determined.  相似文献   

17.
Two major proteins with subunit molecular masses of 68 and 70 kDa were isolated from the integral membrane protein fraction of peroxisomes purified from mouse liver. The two proteins were shown to be distinct proteins by two criteria: first, immunoblot analysis demonstrated that antisera against the 68 kDa protein did not cross-react with the 70 kDa protein, and vice versa; and second, the partial peptide maps resulting from proteinase digestion of the proteins were different. Immunoblot analyses to test the specificities of the antisera demonstrated that only the expected molecular mass species in purified peroxisomes, and in membranes prepared from these organelles, were recognized; there was no identification of proteins from purified mitochondrial or microsomal fractions. The concentrations of both of these proteins were increased in livers of mice treated with clofibrate, a hypolipidemic drug and peroxisome proliferator, with the effect being greater for the 70 kDa component. The localization of the 68 kDa protein was shown to be completely integral to the peroxisome membrane. Although some 70 kDa protein was integral to the membrane, a significant proportion was released from the membrane by some procedures believed to detach peripheral proteins. The 70 kDa protein was also particularly susceptible to degradation during isolation - in particular, addition of EDTA to media used for isolation of peroxisomes resulted in membranes in which this protein was degraded to smaller immunoreactive fragments. These data have been discussed in relation to the significant clarification which they have provided of the status and characteristics of the major protein components of peroxisomal membranes.  相似文献   

18.
Seminal plasma proteins revert the cold-shock damage on ram sperm membrane   总被引:7,自引:0,他引:7  
Ejaculated ram spermatozoa, freed from seminal plasma by a dextran/swim-up procedure and exposed to cold shock, were incubated with ram seminal plasma proteins and analyzed by fluorescence markers and scanning electron microscopy. Seminal plasma proteins bound to the sperm plasma membrane modified the functional characteristics of damaged spermatozoa, reproducing those of live cells. Scanning electron microscopy showed that the dramatic structural damage induced by cooling reverted after incubation with seminal plasma proteins. Assessment of membrane integrity by fluorescence markers also indicated a restoration of intact-membrane cells. This protein adsorption is a concentration-dependent process that induces cell surface restoration in relation to the amount of protein in the incubation medium. Fractionation of ram seminal plasma proteins by exclusion chromatography provided three fractions able to reverse the cold shock effect. Scanning electron microscopy also confirmed the high activity of one fraction, because approximately 50% of cold-shocked sperm plasma membrane surface was restored to its original appearance after incubation. Differences in composition between the three separated fractions mainly resulted from one major band of approximately 20 kDa, which must be responsible for recovering the sperm membrane permeability characteristic of a live cell.  相似文献   

19.
The presence and role of the c-kit proto-oncogene protein was investigated in the mature sperm of the human. A polyclonal antibody against the c-kit peptide was used to perform immunohistochemical (IHC) staining, electron microscopy (EM) studies, and Western blot analysis. The acrosomal region of fresh sperm specifically stained with the antibody. No acrosomal staining or staining limited to the equatorial region was noted in the acrosome-reacted (AR) sperm. EM studies demonstrated immunogold label on the plasma membrane (PM) of the acrosome, and confirmed the lack of binding following the acrosome reaction. A 150 kDa band was detected by Western blot analysis. This protein was released from the sperm surface during sperm capacitation and the acrosome reaction. Antibody against the c-kit receptor significantly inhibited the acrosome reaction and increased sperm agglutination, but did not significantly inhibit sperm motility. These results suggest that the c-kit receptor protein is present in mature human sperm and is released during capacitation and/or the acrosome reaction. The assessment of the c-kit receptor may also be a useful assay for sperm function in male infertility.  相似文献   

20.
Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号