首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequences corresponding to the third intron of the X.laevis L1 ribosomal protein gene were isolated from the second copy of the X.laevis gene and from the single copy of X.tropicalis. Sequence comparison revealed that the three introns share an unusual sequence conservation which spans a region of 110 nucleotides. In addition, they have the same suboptimal 5' splice sites. The three introns show similar features upon oocyte microinjection: they have very low splicing efficiency and undergo the same site specific cleavages which lead to the accumulation of truncated molecules. Computer analysis and RNAse digestions have allowed to assign to the conserved region a specific secondary structure. Mutational analysis has shown that this structure is important for conferring the cleavage phenotype to these three introns. Competition experiments show that the cleavage phenotype can be prevented by coinjection of excess amounts of homologous sequences.  相似文献   

2.
3.
4.
We previously reported that the third intron of the X.laevis L1 ribosomal protein gene encodes for a snoRNA called U16. Here we show that four different introns of the same gene contain another previously uncharacterized snoRNA (U18) which is associated with fibrillarin in the nucleolus and which originates by processing of the pre-mRNA. The pathway of U18 RNA release from the pre-mRNA is the same as the one described for U16: primary endonucleolytic cleavages upstream and downstream of the U18 coding region produce a pre-U18 RNA which is subsequently trimmed to the mature form. Both the gene organization and processing of U18 are conserved in the corresponding genes of X.tropicalis and H.sapiens. The L1 gene thus has a composite structure, highly conserved in evolution, in which sequences coding for a ribosomal protein are intermingled with sequences coding for two different snoRNAs. The nucleolar localization of these different components suggests some common function on ribosome biosynthesis.  相似文献   

5.
More ribosomal spacer sequences from Xenopus laevis.   总被引:25,自引:17,他引:8       下载免费PDF全文
The base sequence analysis of a Xenopus laevis ribosomal DNA repeat (7) has been extended to cover almost the entire non-transcribed and external transcribed spacer. A compilation of these sequences is presented. All the repetitive and non-repetitive sequence elements of the spacer are identified and their evolution discussed. Comparison of the X.laevis and S.cerevisiae (25,26) ribosomal DNAs shows about 80% sequence conservation in the 18S gene but no sequence conservation, from the available data, in the external transcribed spacer. The sequence coding for the 3' terminus of the X.laevis 40S ribosomal precursor RNA is presented and its structural features analyzed.  相似文献   

6.
7.
8.
By cross-hybridization with a cDNA probe for the Xenopus laevis ribosomal protein L1 we have been able to isolate the homologous genes from a Saccharomyces cerevisiae genomic library. We have shown that these genes code for a ribosomal protein which was previously named L2. In yeast, like in X. laevis, these genes are present in two copies per haploid genome and, unlike the vertebrate counterpart, they do not contain introns. Amino acid comparison of the X. laevis L1 and S. cerevisiae L2 proteins has shown the presence of a highly conserved protein domain embedded in very divergent sequences. Although these sequences are very poorly homologous, they confer an overall secondary structure and folding highly conserved in the two species.  相似文献   

9.
10.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

11.
12.
Recent cloning and sequencing of one of the two Xenopus gene copies (S1b) coding for the ribosomal protein S1 has revealed that its introns III, V and VI carry a region of about 150 nt that shares an identity of 60%. We show here the presence in Xenopus oocytes and cultured cells of a 143-147 nt long RNA species encoded by these three repeated sequences on the same strand as the S1 mRNA and by at least one repeat present in the S1 a copy of the r-protein gene. We identify these RNAs as forms of the small nucleolar RNA U15 (U15 snoRNA) because of their sequence homology with an already described human U15 RNA encoded in the first intron of the human r-protein S3 gene, which is homologous to Xenopus S1. Comparison of the various Xenopus and human U15 RNA forms shows a very high conservation in some regions, but considerable divergence in others. In particular the most conserved sequences include two box C and two box D motifs, typical of most snoRNAs interacting with the nucleolar protein fibrillarin. Adjacent to the two D boxes there are two sequences, 9 and 10 nt in length, which are perfectly complementary to an evolutionary conserved sequence of the 28S rRNA. Modeling the possible secondary structure of Xenopus and human U15 RNAs reveals that, in spite of the noticeable sequence diversity, a high structural conservation in some cases may be maintained by compensatory mutations. We show also that the different Xenopus U15 RNA forms are expressed at comparable levels, localized in the nucleoli and produced by processing of the intronic sequences, as recently described for other snoRNAs.  相似文献   

13.
14.
15.
We have detected a DNAseI hypersensitive site in the ribosomal DNA spacer of Xenopus laevis and Xenopus borealis. The site is present in blood and embryonic nuclei of each species. In interspecies hybrids, however, the site is absent in unexpressed borealis rDNA, but is present normally in expressed laevis rDNA. Hypersensitive sites are located well upstream (over lkb) of the pre-ribosomal RNA promoter. Sequencing of the hypersensitive region in borealis rDNA, however, shows extensive homology with the promoter sequence, and with the hypersensitive region in X. laevis. Of two promoter-like duplications in each spacer, only the most upstream copy is associated with hypersensitivity to DNAaseI. Unlike DNAaseI, Endo R. MspI digests the rDNA of laevis blood nuclei at a domain extending downstream from the hypersensitive site to near the 40S promoter. Since the organisation of conserved sequence elements within this "proximal domain" is similar in three Xenopus species whose spacers have otherwise evolved rapidly, we conclude that this domain plays an important role in rDNA function.  相似文献   

16.
17.
18.
19.
20.
D Dunon-Bluteau  G Brun 《FEBS letters》1986,198(2):333-338
Extensive corrections of the nucleotide sequence of the Xenopus laevis mitochondrial small ribosomal subunit RNA gene [Roe et al. (1985) J. Biol. Chem. 260, 9759-9774] are reported. We found an additional fragment of 142 nucleotides and describe 25 nucleotide differences scattered in the gene. The nucleotide sequence the same gene of bovine mitochondrion. We propose a new secondary structure for the product of the X. laevis gene. Contrary to the finding of Roe et al., we observed the same general organization of stems and loops as for the human mitochondrial 12 S rRNA gene product. On the other hand, the structural homology observed between the mitochondrial and cytoplasmic small subunit rRNAs of X. laevis appears much lower. These results strongly suggest that animal vertebrate mitochondrial DNAs have followed the same evolutionary pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号