首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The low density lipoprotein receptor-related protein (LRP) is a multifunctional endocytic cell-surface receptor that binds and internalizes a diverse array of ligands. The receptor contains four putative ligand-binding domains, generally referred to as clusters I, II, III, and IV. In this study, soluble recombinant receptor fragments, representing each of the four individual clusters, were used to map the binding sites of a set of structurally and functionally distinct ligands. Using surface plasmon resonance, we studied the binding of these fragments to methylamine-activated alpha(2)-macroglobulin, pro-urokinase-type plasminogen activator, tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor-1, t-PA.plasminogen activator inhibitor-1 complexes, lipoprotein lipase, apolipoprotein E, tissue factor pathway inhibitor, lactoferrin, the light chain of blood coagulation factor VIII, and the intracellular chaperone receptor-associated protein (RAP). No binding of the cluster I fragment to any of the tested ligands was observed. The cluster III fragment only bound to the anti-LRP monoclonal antibody alpha(2)MRalpha3 and weakly to RAP. Except for t-PA, we found that each of the ligands tested binds both to cluster II and to cluster IV. The affinity rate constants of ligand binding to clusters II and IV and to LRP were measured, showing that clusters II and IV display only minor differences in ligand-binding kinetics. Furthermore, we demonstrate that the subdomains C3-C7 of cluster II are essential for binding of ligands and that this segment partially overlaps with a RAP-binding site on cluster II. Finally, we show that one RAP molecule can bind to different clusters simultaneously, supporting a model in which RAP binding to LRP induces a conformational change in the receptor that is incompatible with ligand binding.  相似文献   

2.
The low density lipoprotein receptor-related protein-deleted in tumor (LRP1B, initially referred to as LRP-DIT) was cloned and characterized as a candidate tumor suppressor. It is a new member of the low density lipoprotein receptor gene family. Its overall domain structure and large size (approximately 600 kDa) are similar to LRP and suggest that it is a multifunctional cell surface receptor. Herein, we characterize a series of ligands for the receptor using cell lines that stably express it as a domain IV minireceptor (mLRP1B4). Ligands of LRP including receptor-associated protein, urokinase plasminogen activator, tissue-type plasminogen activator, and plasminogen activator inhibitor type-1 each demonstrate binding, internalization, and degradation via mLRP1B4. Interestingly, the kinetics of ligand endocytosis is distinctly different from that of LRP, with LRP1B exhibiting a markedly diminished internalization rate. In addition, tissue expression analysis reveals that the LRP1B gene is expressed in brain, thyroid, and salivary gland. These studies thus extend the physiological roles of members of the LDL receptor family.  相似文献   

3.
Plasminogen activator inhibitor 1 (PAI-1) is a major inhibitor of urokinase-type plasminogen activator (uPA). In this study, we explored the role of PAI-1 in cell signaling. In MCF-7 cells, PAI-1 did not directly activate the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) 1 and ERK2, but instead altered the response to uPA so that ERK phosphorylation was sustained. This effect required the cooperative function of uPAR and the very low density lipoprotein receptor (VLDLr). When MCF-7 cells were treated with uPA-PAI-1 complex in the presence of the VLDLr antagonist, receptor-associated protein, or with uPA-PAI-1(R76E) complex, which binds to the VLDLr with greatly decreased affinity, transient ERK phosphorylation (<5 min) was observed, mimicking the uPA response. ERK phosphorylation was not induced by tissue-type plasminogen activator-PAI-1 complex or by uPA-PAI-1 complex in the presence of antibodies that block uPA binding to uPAR. uPA-PAI-1 complex induced tyrosine phosphorylation of focal adhesion kinase and Shc and sustained association of Sos with Shc, whereas uPA caused transient association of Sos with Shc.By sustaining ERK phosphorylation, PAI-1 converted uPA into an MCF-7 cell mitogen. This activity was blocked by receptor-associated protein and not observed with uPA-PAI-1(R76E) complex, demonstrating the importance of the VLDLr. uPA promoted the growth of other cells in which ERK phosphorylation was sustained, including beta3 integrin overexpressing MCF-7 cells and HT 1080 cells. The MEK inhibitor, PD098059, blocked the growth-promoting activity of uPA and uPA-PAI-1 complex in these cells. Our results demonstrate that PAI-1 may regulate uPA-initiated cell signaling by a mechanism that requires VLDLr recruitment. The kinetics of ERK phosphorylation in response to uPAR ligation determine the function of uPA and uPA-PAI-1 complex as growth promoters.  相似文献   

4.
Reduced Protein Kinase C Activity in Ischemic Spinal Cord   总被引:5,自引:4,他引:1  
Protein phosphorylation was evaluated in a rabbit spinal cord ischemia model under conditions where cyclic AMP-dependent protein kinase (PK-A) and calcium/phospholipid-dependent protein kinase (PK-C) were activated. One hour of ischemia did not affect PK-A activity significantly; however, PK-C activity was reduced by more than 60%. In vitro phosphorylation of endogenous proteins by endogenous PK-C revealed that eight particulate and five cytosolic proteins showed stimulated phosphorylation by PK-C activators in control tissue, although this stimulation was virtually absent in ischemic samples. When control and ischemic particulate fractions were combined, the endogenous protein phosphorylation pattern under PK-C-activating conditions was similar to the ischemic sample, which suggests that inhibitory molecules may be present in the ischemic particulate fraction. In vitro phosphorylation of endogenous proteins under PK-A-activating conditions in ischemic tissue was similar to that in control tissue. The results suggest that the PK-C phosphorylation system is selectively impaired in ischemic spinal cord. In addition to reduced PK-C-dependent phosphorylation, an Mr 64,000 protein was phosphorylated in ischemic cytosolic samples, but not in control samples. The phosphorylation of the Mr 64,000 protein was neither PK-C-dependent nor PK-A-dependent. These altered phosphorylation reactions may play critical roles in neuronal death during the course of ischemia.  相似文献   

5.
Urokinase-type plasminogen activator (uPA) gene expression in LLC-PK1 cells is induced by activation of cAMP-dependent protein kinase (cAMP-PK) or protein kinase C (PK-C). To determine whether protein phosphatases can also modulate uPA gene expression, we tested okadaic acid, a potent specific inhibitor of protein phosphatases 1 and 2A, in the presence and absence of cAMP-PK and PK-C activators. Okadaic acid by itself induced uPA mRNA accumulation. This induction was strongly attenuated by the inhibition of protein synthesis. In contrast, the inhibition of protein synthesis enhanced induction by 8-bromo-cAMP and only delayed induction by 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, down-regulation of PK-C by chronic treatment with TPA did not abrogate the okadaic acid-dependent induction. These results provide evidence for a novel signal transduction pathway leading to gene regulation that involves protein phosphorylation but is independent of both cAMP-PK and PK-C.  相似文献   

6.
Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that regulates tissue factor-triggered blood coagulation. It has previously been reported that TFPI inhibits the proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that TFPI may act as more than just a mediator of coagulation through changes in gene expression. By using DNA-array techniques and Northern blot analysis, we here revealed that TFPI transiently induced the mRNA expression of JUNB and GADD45B. The inducible effects were not observed in TFPIdeltaC (lacking the C-terminal basic region) or antithrombin (heparin-binding anticoagulant protease inhibitor). Moreover, the TFPI-induced expression of GADD45B was blocked by receptor-associated protein, which masks the ligand-binding domain of very low density lipoprotein receptor (VLDL-R). In conclusion, this is the first report to show an effect of TFPI on mRNA expression, and suggests that TFPI modulates cellular functions by inducing JUNB and GADD45B expression through binding to VLDL-R.  相似文献   

7.
Yong Di  Jun Tian  Pu Yang  Shen Qu 《FEBS letters》2010,584(15):3469-24475
Very low density lipoprotein receptors (VLDLR) including type I and type II are known to affect cell functions by binding to its extracellular ligands. However, the effect of these ligands on VLDLR expression remains elusive. Tissue factor pathway inhibitor (TFPI) and urokinase plasminogen activator and plasminogen activator inhibitor 1 (uPA-PAI-1) complex, two ligands of VLDLR, were used to examine their effects on VLDLR expression. TFPI treatment decreased type II VLDLR expression, inhibited cell proliferation and migration, and degradated β-catenin in SGC7901 cells. However, uPA-PAI-1 complex, increased type II VLDLR expression with promoted cell proliferation and migration and stabilization of β-catenin. These results indicated that extracellular ligands can change the expression of type II VLDLR to affect cell proliferation and migration.  相似文献   

8.
Tissue-type plasminogen activator (tPA), a serine protease well known for generating plasmin, has been demonstrated to induce matrix metalloproteinase-9 (MMP-9) gene expression and protein secretion in renal interstitial fibroblasts. However, exactly how tPA transduces its signal into the nucleus to control gene expression is unknown. This study investigated the mechanism by which tPA induces MMP-9 gene expression. Both wild-type and non-enzymatic mutant tPA were found to induce MMP-9 expression in rat kidney interstitial fibroblasts (NRK-49F), indicating that the actions of tPA are independent of its proteolytic activity. tPA bound to the low density lipoprotein receptor-related protein-1 (LRP-1) in NRK-49F cells, and this binding was competitively abrogated by the LRP-1 antagonist, the receptor-associated protein. In mouse embryonic fibroblasts (PEA-13) lacking LRP-1, tPA failed to induce MMP-9 expression. Furthermore, tPA induced rapid tyrosine phosphorylation on the beta subunit of LRP-1, which was followed by the activation of Mek1 and its downstream Erk-1 and -2. Blockade of Erk-1/2 activation by the Mek1 inhibitor abolished MMP-9 induction by tPA in NRK-49F cells. Conversely, overexpression of constitutively activated Mek1 induced Erk-1/2 phosphorylation and MMP-9 expression. In mouse obstructed kidney, tPA, LRP-1, and MMP-9 were concomitantly induced in the renal interstitium. Collectively, these results suggest that besides its classical proteolytic activity, tPA acts as a cytokine that binds to the cell membrane receptor LRP-1, induces its tyrosine phosphorylation, and triggers intracellular signal transduction, thereby inducing specific gene expression in renal interstitial fibroblasts.  相似文献   

9.
Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.  相似文献   

10.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

11.
Tumor overexpression of urokinase-type plasminogen activator (uPA) and its specific inhibitor SerpinE1 (plasminogen activator inhibitor type-1) correlates with poor prognosis and increased metastatic potential. Conversely, tumor expression of uPA and another specific inhibitor, SerpinB2 (plasminogen activator inhibitor type-2), are associated with favorable outcome and relapse-free survival. It is not known how overexpression of these uPA inhibitors results in such disparate outcomes. A possible explanation may be related to the presence of a proposed low density lipoprotein receptor (LDLR)-binding motif in SerpinE1 responsible for mitogenic signaling via ERK that is absent in SerpinB2. We now show that complementation of such a LDLR-binding motif in SerpinB2 by mutagenesis of two key residues enabled high affinity binding to very LDLR (VLDLR). Furthermore, the VLDLR-binding SerpinB2 form behaved in a manner indistinguishable from SerpinE1 in terms of enhanced uPA-SerpinB2 complex endocytosis and subsequent ERK phosphorylation and cell proliferation; that is, the introduction of the LDLR-binding motif to SerpinB2 was necessary and sufficient to allow it to acquire characteristics of SerpinE1 associated with malignancy. In conclusion, this study defines the structural elements underlying the distinct interactions of SerpinE1 versus SerpinB2 with endocytic receptors and how differential VLDLR binding impacts on downstream cellular behavior. This has clear relevance to understanding the paradoxical disease outcomes associated with overexpression of these serpins in cancer.  相似文献   

12.
The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) and gp330, two members of the low density lipoprotein receptor gene family, share a multitude of cysteine-rich repeats. LRP has been shown to act as an endocytosis-mediating receptor for several ligands, including protease-antiprotease complexes and plasma lipoproteins. The former include alpha 2-macroglobulin-protease complexes and plasminogen activator inhibitor-activator complexes. The latter include chylomicron remnant-like particles designated beta-very low density lipoproteins (beta-VLDL) complexed with apoprotein E or lipoprotein lipase. The binding specificity of gp330 is unknown. In the current studies we show that gp330 from rat kidney membranes binds several of these ligands on nitrocellulose blots. We also show that both LRP and gp330 bind an additional ligand, bovine lactoferrin, which is known to inhibit the hepatic clearance of chylomicron remnants. Lactoferrin blocked the LRP-dependent stimulation of cholesteryl ester synthesis in cultured human fibroblasts elicited by apoprotein E-beta-VLDL or lipoprotein lipase-beta-VLDL complexes. Cross-competition experiments in fibroblasts showed that the multiple ligands recognize at least three distinct, but partially overlapping sites on the LRP molecule. Binding of all ligands to LRP and gp330 was inhibited by the 39-kDa protein, which co-purifies with the two receptors, suggesting that the 39-kDa protein is a universal regulator of ligand binding to both receptors. The correlation of the inhibitory effects of lactoferrin in vivo and in vitro support the notion that LRP functions as a chylomicron remnant receptor in liver. LRP and gp330 share a multiplicity of binding sites, and both may function as endocytosis-mediating receptors for a large number of ligands in different organs.  相似文献   

13.
The second messengers and protein kinases involved in the induction of type I plasminogen activator inhibitor (PAI-1) synthesis by various agents were evaluated in cultured bovine aortic endothelial cells. Phorbol myristate acetate (PMA) induced PAI-1 in these cells implicating the protein kinase C (PK-C) pathway. However, bradykinin, which also activates PK-C in bovine aortic endothelial cells, did not induce PAI-1. Moreover, when PK-C was down-regulated by PMA pretreatment, subsequent induction of PAI-1 by transforming growth factor beta (TGF beta) and tumor necrosis factor alpha (TNF alpha) was unaltered, and induction by lipopolysaccharide (LPS) was decreased by only 50%. LPS increased phospholipid second messengers which can activate PK-C but TGF beta and TNF alpha did not. Agents which increase cAMP, (e.g., forskolin and isobutylmethylxanthine) blocked the induction of PAI-1 synthesis by PMA, LPS, TGF beta and TNF alpha suggesting that induction may occur by lowering cAMP. This possibility seems unlikely since cAMP levels did not change in response to any of these agents. Moreover, somatostatin lowered cAMP but did not induce PAI-1. PAI-1 was not induced by treating the cells with cGMP, Na+/H+ ionophore and calcium ionophore or arachidonic acid.  相似文献   

14.
The lipolysis-stimulated receptor (LSR) is a lipoprotein receptor primarily expressed in the liver and activated by free fatty acids. Antibodies inhibiting LSR functions showed that the receptor is a heterotrimer or tetramer consisting of 68-kDa (alpha) and 56-kDa (beta) subunits associated through disulfide bridges. Screening of expression libraries with these antibodies led to identification of mRNAs derived by alternate splicing from a single gene and coding for proteins with molecular masses matching that of LSR alpha and beta. Antibodies directed against a synthetic peptide of LSR alpha and beta putative ligand binding domains inhibited LSR activity. Western blotting identified two liver proteins with the same apparent molecular mass as that of LSR alpha and beta. Transient transfections of LSR alpha alone in Chinese hamster ovary cells increased oleate-induced binding and uptake of lipoproteins, while cotransfection of both LSR alpha and beta increased oleate-induced proteolytic degradation of the particles. The ligand specificity of LSR expressed in cotransfected Chinese hamster ovary cells closely matched that previously described using fibroblasts from subjects lacking the low density lipoprotein receptor. LSR affinity is highest for the triglyceride-rich lipoproteins, chylomicrons, and very low density lipoprotein. We speculate that LSR is a rate-limiting step for the clearance of dietary triglycerides and plays a role in determining their partitioning between the liver and peripheral tissues.  相似文献   

15.
16.
J Herz  D E Clouthier  R E Hammer 《Cell》1992,71(3):411-421
The low density lipoprotein receptor-related protein (LRP) is a large multifunctional clearance receptor that has been implicated in the hepatic uptake of chylomicron remnants and in the removal of protease-inhibitor complexes from the circulation and from the extracellular space. Disruption of the LRP gene in mice blocks development of LRP-/- embryos around the implantation stage. The expression pattern of LRP in the postimplantation stage embryo is identical to that of urokinase, a plasminogen activator that confers invasive properties to migrating cells. We demonstrate that LRP mediates uptake and degradation of urokinase-type plasminogen activator-plasminogen activator inhibitor 1 complexes and propose that the inability of the giant cells to remove the inactive protease complexes from their surfaces interferes with implantation of the embryo.  相似文献   

17.
Subcutaneous injection of murine macrophage cell line P388D1 into syngeneic DBA/2 produced tumors, which upon solubilization with 40 mM octyl glucoside contained acetylated low density lipoprotein binding activity. The tumor-derived receptor specifically bound acetylated low density lipoprotein with an affinity of approximately 3 X 10(-8) M but did not bind low density lipoprotein or high density lipoprotein. It was identical in binding specificity, affinity, and Pronase sensitivity to the receptor in intact cells or that obtained from solubilized cultured cell membranes. Partial purification of the receptor was achieved by solubilizing tumors with 1% Triton X-100 followed by chromatography on polyethyleneimine cellulose. After elution with a NaCl gradient in the presence of octyl glucoside and association with liposomes, a 287-fold purification of the receptor was achieved. The receptor was identified by specific ligand blotting as a 260,000-dalton protein having a pI of approximately 6.0. Binding to the receptor by acetylated low density lipoprotein, malondialdehyde-modified low density lipoprotein, and maleic anhydride-modified serum albumin was demonstrated by ligand blotting. A single receptor protein can, therefore, account for the binding of multiple types of charge-modified lipoprotein and nonlipoprotein ligands to the macrophage cell surface.  相似文献   

18.
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.  相似文献   

19.
20.
Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3beta. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3beta kinase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号