首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A calcium and calmodulin-regulated cyclic nucleotide phosphodiesterase has been shown to be an integral component of both rat and bovine sperm flagella. The calcium-activated enzyme was inhibited by both trifluoperazine (ID50 = 10 microM) and [ethylene-bis(oxyethylenenitrilo)]tetraacetic acid (EGTA), and the basal activity measured in the presence of EGTA was stimulated by limited proteolysis to that observed in the presence of calcium/calmodulin. 125I-Calmodulin binding to purified rat sperm flagella has been characterized and the flagellar-associated calmodulin-binding proteins identified by a combination of gel and nitrocellulose overlay procedures and by chemical cross-linking experiments using dimethyl suberimidate. 125I-Calmodulin bound to demembranated rat sperm flagella in a time- and concentration-dependent manner. At equilibrium, 30-40% of the bound 125I-calmodulin remains associated with the flagella after treatment with EGTA or trifluoperazine. The majority of the bound 125I-calmodulin, both the Ca2+-dependent and -independent, was displaced by excess calmodulin. A 67-kDa calmodulin-binding protein was identified by both the gel and nitrocellulose overlay procedures. In both cases, binding was dependent on Ca2+ and was totally inhibited by trifluoperazine, EGTA, and excess calmodulin. On nitrocellulose overlays, the concentration of calmodulin required to decrease binding of 125I-calmodulin by 50% was between 10(-10) and 10(-11) M. Limited proteolysis resulted in the total loss of all Ca2+-dependent binding to the 67-kDa polypeptide. Chemical cross-linking experiments identified a major calcium-dependent 125I-calmodulin:polypeptide complex in the 84-90-kDa molecular mass range and a minor complex of approximately 200 kDa. Immunoblot analysis showed that the major 67-kDa calmodulin-binding protein did not cross-react with polyclonal antibodies raised against either the calcium/calmodulin-regulated cyclic nucleotide phosphodiesterase or phosphoprotein phosphatase (calcineurin) from bovine brain.  相似文献   

2.
The binding of 125I-calmodulin to intact secretion granules and protein gel blots of secretion granules from pancreatic islet tissue was examined. Binding of 125I-calmodulin to intact secretion granules was Ca2+-dependent and inhibited by the calmodulin inhibitors trifluoperazine and calmidazolium. Binding was inhibited by excess (200 nM) unlabeled calmodulin, but not by parvalbumin, a Ca2+-binding protein which has little sequence homology to calmodulin. In order to study the binding of calmodulin to specific secretion granule proteins, secretion granules were solubilized, and the solubilized proteins were resolved on sodium dodecyl sulfate-polyacrylamide gels, electrophoretically transferred to nitrocellulose, and incubated with 125I-calmodulin. Autoradiograms of the protein gel blots revealed the presence of three major calmodulin-binding proteins with approximate molecular weights of 73,000, 64,000, and 58,000. These proteins reversibly bound calmodulin in a calcium-dependent manner. Unlabeled calmodulin in the range of 0.1-1.0 nM competed with 125I-calmodulin for binding to these proteins, whereas troponin and parvalbumin were 100 and 1000-fold less effective, respectively. Trifluoperazine blocked binding to the granule proteins in a range of 10(-4) to 10(-5) M, and calmidazolium was effective between 10(-5) and 10(-6) M. Trypsin, at a concentration which did not lyse granules, markedly inhibited calmodulin binding to intact secretion granules. Protein blots from trypsin-treated granules showed that the three major calmodulin-binding proteins were absent. These results indicate that Ca2+-dependent calmodulin-binding proteins are present on the cytoplasmic surface of islet secretion granules and are consistent with the hypothesis that these proteins may play a role in secretion granule exocytosis.  相似文献   

3.
Tritiated calmodulin (T-CM) was bound to the EGTA-treated particulate fraction of cardiac muscle in a calcium-dependent manner with half-maximal binding occurring between 0.8 to 1.2 microM calcium. Binding exhibited high specificity at an optimum pH of 7.4-7.6. An excess of parvalbumin and other globular proteins did not displace T-CM. The Kd for the interaction was 2.5 +/- 0.83 microM. Binding was trypsin-sensitive, inhibited by high ionic strength and was heat inactivated at a midpoint of 48 - 50 degrees C. Competitive displacement of T-CM occurred with unlabeled troponin C and calmodulin over the same concentration range. The first-order rate constant of T-CM dissociation was 3.27 min-1. Calcium-dependent binding of T-CM was inhibited equally by both mepacrine and trifluoperazine with 50 percent inhibition occurring at 70 microM.  相似文献   

4.
To identify protein targets for calmodulin (CaM) in the cilia of Paramecium tetraurelia, we employed a 125I-CaM blot assay after resolution of ciliary proteins on SDS/polyacrylamide gels. Two distinct types of CaM-binding proteins were detected. One group bound 125I-CaM at free Ca2+ concentrations above 0.5-1 microM and included a major binding activity of 63 kDa (C63) and activities of 126 kDa (C126), 96 kDa (C96), and 36 kDa (C36). CaM bound these proteins with high (nanomolar) affinity and specificity relative to related Ca2+ receptors. The second type of protein bound 125I-CaM only when the free Ca2+ concentration was below 1-2 microM and included polypeptides of 95 kDa (E95) and 105 kDa (E105). E105 may also contain Ca2+-dependent binding sites for CaM. Both E95 and E105 exhibited strong specificity for Paramecium CaM over bovine CaM. Ciliary subfractionation experiments suggested that C63, C126, C96, E95, and E105 are bound to the axoneme, whereas C36 is a soluble and/or membrane-associated protein. Additional Ca2+-dependent CaM-binding proteins of 63, 70, and 120 kDa were found associated with ciliary membrane vesicles. In support of these results, filtration binding assays also indicated high-affinity binding sites for CaM on isolated intact axonemes and suggested the presence of both Ca2+-dependent and Ca2+-inhibitable targets. Like E95 and E105, the Ca2+-inhibitable CaM-binding sites showed strong preference for Paramecium CaM over vertebrate CaM and troponin C. Together, these results suggest that CaM has multiple targets in the cilium and hence may regulate ciliary motility in a complex and pleiotropic fashion.  相似文献   

5.
T Okabe  K Sobue 《FEBS letters》1987,213(1):184-188
A new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, was purified from the bovine synaptosomal membrane. The binding of calmodulin to this protein was Ca2+-dependent, and was inhibited by trifluoperazine, the association constant being calculated to be 2.2 X 10(6) M-1. Maximally, 1 mol of calmodulin bound to 1 mol of the purified protein. This protein was phosphorylated by both kinase II (Ca2+- and calmodulin-dependent kinase) and cyclic AMP-dependent kinase. In addition, antibody against this protein was demonstrated to have an immunological crossreactivity with synapsin I in the synaptosomal membrane.  相似文献   

6.
Calmodulin binding proteins in bovine thyroid plasma membranes were investigated using the 125I-labeled calmodulin gel overlay technique. The purified thyroid plasma membranes contained two calmodulin binding proteins with molecular weights of approx. 220 000 and 150 000 respectively. The binding of 125I-labeled calmodulin to the calmodulin binding proteins was inhibited by excess unlabeled calmodulin, 100 μM trifluoperazine or 1 mM EGTA, indicating that the binding was calmodulin-specific and calcium-dependent. The calmodulin binding proteins appear to be components of the cytoskeleton since they remained in the pellet after treatment of the thyroid plasma membranes with 1% Triton X-100. Similar calmodulin binding proteins were present in rat liver plasma membranes, but not in human red blood cell plasma membranes. These two calmodulin binding proteins may interact with other components of the cytoskeleton and regulate endocytosis, exocytosis and hormone secretion in thyroid cells.  相似文献   

7.
A routine semiquantitative procedure which permits soluble calcium-binding proteins to be detected following their adsorption to nitrocellulose membrane filters by liquid scintillation counting of specifically bound 45Ca is described. Proteins with high affinity for calcium such as calmodulin and troponin can be detected with a detection threshold of about 2 micrograms per 400 microliter. Modifications to decrease this limit are feasible and are discussed. This technique should allow calcium-binding proteins of unknown function to be assayed during their purification. It was necessary to treat solutions containing 45Ca with chelex-100 in order to prevent loss of calcium binding which occurred as the decay product (Sc3+) accumulated, suggesting that all studies utilizing 45Ca as a tracer should evaluate possible interference by this ion.  相似文献   

8.
The quantitative binding of a phenothiazine drug to calmodulin, calmodulin fragments, and structurally related calcium binding proteins was measured under conditions of thermodynamic equilibrium by using a gel filtration method. Plant and animal calmodulins, troponin C, S100 alpha, and S100 beta bind chlorpromazine in a calcium-dependent manner with different stoichiometries and affinities for the drug. The interaction between calmodulin and chlorpromazine appears to be a complex, calcium-dependent phenomenon. Bovine brain calmodulin bound approximately 5 mol of drug per mol of protein with apparent half-maximal binding at 17 microM drug. Large fragments of calmodulin had limited ability to bind chlorpromazine. The largest fragment, containing residues 1-90, retained only 5% of the drug binding activity of the intact protein. A reinvestigation of the chlorpromazine inhibition of calmodulin stimulation of cyclic nucleotide phosphodiesterase further indicated a complex, multiple equilibrium among the reaction components and demonstrated that the order of addition of components to the reaction altered the drug concentration required for half-maximal inhibition of the activity over a 10-fold range. These results confirm previous observations using immobilized phenothiazines [Marshak, D.R., Watterson, D.M., & Van Eldik, L.J. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6793-6797] that indicated a subclass of calcium-modulated proteins bound phenothiazines in a calcium-dependent manner, demonstrate that the interaction between phenothiazines and calmodulin is more complex than previously assumed, and suggest that extended regions of the calmodulin molecule capable of forming the appropriate conformation are required for specific, high-affinity, calcium-dependent drug binding activity.  相似文献   

9.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

10.
Summary Over the past few years calcium has emerged as an important bioregulator. Upon external stimulation, the cell generates a transient Ca2+ increase, which is transformed into a cellular event through a molecular cascade. The first step in this cascade is the binding of calcium to proteins present in the cytosol. These proteins capable of binding Ca2+ under physiological conditions all belong to the same evolutionary family that evolved from a common ancestor. However, they strongly differ in the properties of their calcium binding sites. Calmodulin, the ubiquitous calcium binding protein present in all eukaryotic cells, is very close to the ancestor protein, presents four calcium binding sites which bind calcium, magnesium and monovalent ions competitively and is involved in the triggering of cellular processes. Parvalbumin, another member of the family, is more specialized and found mostly in fast-twitch skeletal muscle. It binds calcium and magnesium with high affinity and seems to be involved in muscle relaxation. On the other hand, troponin C which confers Ca2+ sensitivity to acto-myosin interaction exhibits both triggering and relaxing sites. The study of intracellular Ca2– binding proteins has shown that calcium binding proteins have evolved from a simple common structure to fulfill different functions.Abbreviations CaBP calcium-binding protein - ICaBP the vitamin D-dependent intestinal Cat+binding protein - S-100 the glial S-100 protein - RLC the phosphorylatable myosin regulatory light chain - CaM calmodulin - Pa parvalbumin - TnC troponin C - TnI troponin I - Hepes N-2-hydroxyethylpipezarine, N-2-ethane-sulfonic acid - W7 N-(6-Aminohexyl)-5-chloro-l-Naphtalene sulfonamide - SDS sodium dodecyl sulfate - NMR nuclear magnetic resonance  相似文献   

11.
The mechanism by which calmodulin and troponin C influence phosphorylation of troponin I (TnI) by protein kinase C was investigated. The phosphorylation of TnI by protein kinase C requires the presence of acidic phospholipid, calcium and diacylglycerol. Light scattering intensity and fluorescence intensity experiments showed that TnI associated with the phospholipid membranes and caused extensive aggregation. In the presence of Ca2+, TnI-phospholipid interactions were prevented by approximately stoichiometric amounts of either troponin C or calmodulin. Troponin C was shown to completely inhibit phosphorylation of TnI by either protein kianse C or by phosphorylase b kinase. In contrast, calmodulin completely inhibited phosphorylation of TnI by protein kinase C, but had only little effect on TnI phosphorylation by phosphorylase b kinase. Inhibition by calmodulin did not appear to be due to interaction with PKC, since calmodulin mildly increased protein kinase C phosphorylation of histone III-S. The ratio of phosphoserine to phosphothreonine in protein kinase C-phosphorylated TnI remained approximately constant for reactions inhibited by up to 90% by clamodulin. TnI interactions with phospholipid and phosphorylation of TnI by PKC were also prevented by high salt concentrations. However, salt concentrations adequate to inhibit phosphorylation were sufficient to dissociate only TnI, but not protein kinase C from the membrane. These results suggest that the binding of TnI to phospholipid is required for phosphorylation by protein kinase C and that prevention of this binding by any means completely inhibited phosphorylation of TnI by protein kinase C.  相似文献   

12.
Calcium-dependent control of caldesmon-actin interaction by S100 protein   总被引:3,自引:0,他引:3  
Caldesmon from chicken gizzard muscle has been examined for ability to interact with S100 protein using sedimentation, low-shear viscosity, and affinity chromatography. Ca2+/S100 protein, like Ca2+/calmodulin, inhibited the binding of caldesmon to F-actin in a concentration-dependent manner and the inhibition was not observed in the absence of Ca2+. Caldesmon was bound to S100 protein-Sepharose in the presence of Ca2+ and released with EGTA, indicating that there is a direct interaction between caldesmon and S100 protein. The binding of S100 protein to caldesmon also relieved actomyosin Mg2(+)-ATPase inhibition by caldesmon. The molar ratio of S100 protein to caldesmon required for half-maximal restoration was about 0.3, a value less than that in the case of calmodulin. S100 protein, however, was less effective in terms of the maximal extent of the restoration. With respect to Ca2(+)-sensitivity, the restoration profiles were monophasic with a midpoint at 3 x 10(-5) M for S100 protein and 8 x 10(-6) M for calmodulin. The restoration by S100 protein was almost wholly inhibited by TFP, but not by W-7. Taken together, our results suggest that a Ca2(+)-binding protein other than calmodulin may regulate caldesmon-dependent cellular functions.  相似文献   

13.
1. Troponin C and calmodulin were not digested by thrombin at a significant rate in the presence of Ca2+. 2. In the presence of EGTA, troponin C was digested by thrombin to yield three peptides, TH1 (residues 1--120), TH3 (residues 1--100) and TH2 (residues 121--159). 3. In the presence of EGTA calmodulin was digested by thrombin giving two peptides, TM1 (residues 1--106) and TM2 (residues 107--148). 4. The electrophoretic mobilities of peptides TH1 and TM1 were increased at pH 8.6 by Ca2+ both in the presence and absence of urea. The mobilities of peptides TH2 and TM2 were unaltered under these conditions. 5. Peptides TH1, TH2 and tM1 formed complexes with troponin I on polyacrylamide gels at pH 8.6 in the presence of Ca2+. 6. The phosphorylation of troponin I by cyclic AMP-dependent protein kinase was significantly inhibited by peptides TH1 and TH3 and to a lesser extent by peptide TM1. 7. The calmodulin peptide TM1 activated myosin light-chain kinase when present in large molar excess. Peptide TM2 did not activate the enzyme.  相似文献   

14.
125I-labelled retinol-binding protein (RBP) bound to specific receptors in human placental brush-border membranes. Binding at 22 degrees C reached equilibrium within 15 min, but prolonged incubation caused a subsequent decline. Scatchard analysis of the equilibrium binding data at 22 degrees C and 15 min showed high-(3.0 +/- 2.7 x 10(-9) M) and low-(9.5 +/- 3.5 x 10(-8) M) affinity binding components. 125I-RBP, bound to membranes at 22 degrees C for 15 min and subsequently dissociated with excess unlabelled RBP, exhibited biphasic dissociation kinetics consisting of fast and slow components of release. In contrast, Scatchard analysis and dissociation kinetics of the binding that had taken place at 37 degrees C for 1 h showed the fast-dissociating/low-affinity binding component, but little of the slow-dissociating/higher-affinity binding component. When 125I-RBP, after incubation with membranes at 37 degrees C for 1 h, was re-isolated and subjected to dissociation kinetic analysis using a fresh batch of membranes, the fast-dissociating phase was unchanged, but the slow phase was almost absent. The complex kinetics were interpreted in terms of a heterogeneity in RBP consisting of high- and low-affinity binding forms. The higher-affinity-binding form is thought to be converted into the lower-affinity state on binding to the receptor. Transthyretin inhibited 125I-RBP binding to the membrane, suggesting that free, rather than transthyretin-associated, RBP bound to the receptor. The RBP receptor was trypsin-, heat- and thiol-group-specific-reagent sensitive and was highly specific for RBP.  相似文献   

15.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

16.
A marked induction of 125I-calmodulin binding proteins (185kDa and 115kDa) occurred in the rat kidney in response to treatment with 1,25-dihydroxyvitamin D3 (100 ng/day s.c. x 7d). These 125I-calmodulin binding proteins, measured by the gel overlay procedure, exhibited calcium dependence and were abolished in the presence of excess unlabelled calmodulin. The response was tissue specific: there was no change in 125I-calmodulin binding in rat testis, heart, and brain and only a modest elevation of binding to one calmodulin binding protein in the intestinal mucosa. These results are particularly important in suggesting that the calmodulin signal transduction mechanism may, via changes in its acceptor proteins, participate in mediating some biological effects of 1,25-dihydroxyvitamin D3.  相似文献   

17.
In an effort to elucidate the mechanism of calmodulin regulation of muscle contraction, we investigated the interaction between calmodulin and troponin components in the presence of Ca2+ or Sr2+ by the use of ultracentrifugation methods and polyacrylamide-gel electrophoresis. Skeletal-muscle troponin C bound to troponin I and dissociated it from the tropomyosin-actin complex in the presence of Ca2+ or Sr2+. When troponin T was absent, calmodulin bound to troponin I and dissociated it from the tropomyosin-actin complex in the presence of Ca2+ or Sr2+. When troponin T was present, calmodulin hardly bound to troponin I even in the presence of bivalent cations. Trifluoperazine, a calmodulin antagonist, inhibited the bivalent-cation-dependent interaction between calmodulin and troponin I. Calmodulin migrated more slowly in the presence of Sr2+ than it did in the presence of EGTA but faster than it did in the presence of Ca2+ on polyacrylamide-gel electrophoresis under non-denaturing conditions. It is concluded that troponin T is not required in the calmodulin regulation of muscle contraction because troponin T inhibits the bivalent-cation-dependent interaction between calmodulin and troponin I and because calmodulin binds to troponin I and dissociates it from the tropomyosin-actin complex in a bivalent-cation-dependent manner. Sr2+-induced exposure of the hydrophobic region enables calmodulin to bind to troponin I, as is the case with Ca2+.  相似文献   

18.
This paper describes the sequence homology of calcium-binding proteins belonging to the troponin C superfamily. Specifically, this similarity has been examined for 276 twelve-residue calcium-binding loops. It has been found that, in the calcium-binding loop, several residues appear invariant, regardless of the species of origin or the affinity of the protein. These residues are Asp at position 1 (+X of the coordinating position of the calcium), Asp or Asn at position 3 (+Y), Gly at position 6, Ile at position 8, and Glu at position 12 (-Z). It has also been found that conservation of certain residues can vary in similar sites in similar proteins. For example, position 3 (+Y) in site 3 of troponin C is always an Asn, whereas in calmodulin the residue is always Asp. This study also examined the calcium-binding affinities of peptide fragments comprising the loop, helix-loop, loop-helix, and helix-loop-helix. These were compared with larger enzymatic or chemically generated protein fragments in an effort to understand the various contributions to the calcium-binding affinity of a single-site versus a two-site domain as found in troponin C and calmodulin. Based on free energy differences, it was found that a 34-residue helix-loop-helix peptide represents about 60% of the binding affinity found in the intact protein. Cooperativity with a second calcium binding site accounted for the remaining 40% of the affinity.  相似文献   

19.
Calcium uptake in isolated brush-border vesicles from rat small intestine.   总被引:1,自引:1,他引:0  
Ca2+ uptake in brush-border vesicles isolated from rat duodena was studied by a rapid-filtration technique. Ca2+ uptake showed saturation kinetics, was dependent on the pH and ionic strength of the medium and was independent of metabolic energy. Uptake activity was readily inhibited by Ruthenium Red, La3+, tetracaine, EGTA, choline chloride and Na+ or K+. The effect of variations in medium osmolarity on Ca2+ uptake and the ionophore A23187-induced efflux of the cation from preloaded vesicles indicated that the Ca2+-uptake process involved binding to membrane components, as well as transport into an osmotically active space. Scatchard-plot analyses of the binding data suggested at least two classes of Ca2+-binding sites. The high-affinity sites, Ka = (2.7 +/- 1.1) x 10(4) M-1 (mean +/- S.D.) bound 3.2 +/- 0.8 nmol of Ca2+/mg of protein, whereas the low-affinity sites (Ka = 60 +/- 6 M-1) bound 110 +/- 17 nmol of Ca2+/mg of protein. In the presence of 100 mM-NaCl, 1.7 and 53 nmol of Ca2+/mg of protein were bound to the high- and low-affinity sites respectively. Decreased Ca2+-uptake activity was observed in vesicles isolated from vitamin D-deficient as compared with vitamin D-replete animals and intraperitoneal administration of 1,25-dihydroxycholecalciferol to vitamin D-deficient rats 16 h before membrane isolation stimulated the initial rate of Ca2+ uptake significantly. The data indicated that Ca2+ entry and/or binding was passive and may involve a carrier-mediated Ca2+-uptake component that is associated with the brush-border membrane. Altering the electrochemical potential difference across the membrane by using anions of various permeability and selected ionophores appeared to increase primarily binding to the membrane rather than transport into the intravesicular space. Since there is considerable binding of Ca2+ to the vesicle interior, a comprehensive analysis of the transport properties of the brush-border membrane remains difficult at present.  相似文献   

20.
Trifluoperazine inhibits ADP-stimulated respiration in mung bean (Phaseolus aureus) mitochondria when either NADH, malate, or succinate serve as substrates (IC50 values of 56, 59, and 55 microM, respectively). Succinate:ferricyanide oxidoreductase activity of these mitochondria was inhibited to a similar extent. The oxidation of ascorbate/TMPD was also sensitive to the phenothiazine (IC50 = 65 microM). Oxidation of exogenous NADH was inhibited by trifluoperazine even in the presence of excess EGTA [ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid] (IC50 = 60 microM), indicating an interaction with the electron transport chain rather than with the dehydrogenase itself. In contrast, substrate oxidation in Voodoo lily (Sauromatum guttatum) mitochondria was relatively insensitive to the phenothiazine. The results suggest the bc1 complex to be a major site of inhibition. The membrane potential of energized mung bean mitochondria was depressed by micromolar concentrations of trifluoperazine, suggesting an effect on the proton-pumping capability of these mitochondria. Membrane-bound and soluble ATPases were equally sensitive to trifluoperazine (IC50 of 28 microM for both), implying the site of inhibition to be on the F1. Inhibition of the soluble ATPase was not affected by EGTA, CaCl2, or exogenous calmodulin. Trifluoperazine inhibition of electron transport and phosphorylation in plant mitochondria appears to be due to an interaction with a protein of the organelle that is not calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号