首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
RNA Processing and Degradation in Bacillus subtilis   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

5.
Summary TheBacillus subtilis small cytoplasmic RNA (scRNA) has an important, although not yet defined function in protein biosynthesis. Here we describe the mapping of the single copy scRNA gene and the flanking homolog todnaZX ofEscherichia coli, termed dnaX. The scRNA gene region of aB. subtilis wild-type strain was marked with acat gene and mapped by scoring chromosomal co-transformation rates of various mutant strains to chloramphenicol resistance and loss of the mutant phenotypes, respectively. This analysis, together with anEcoRI map comparison, places the scRNA gene anddnaX in the vicinity ofrecM near the replication origin region ofB. subtilis.  相似文献   

6.
Bacillus subtilis small cytoplasmic RNA (scRNA; 271 nucleotides) is a member of the signal recognition particle (SRP) RNA family, which has evolutionarily conserved primary and secondary structures. The scRNA consists of three domains corresponding to domains I, II, and IV of human SRP 7S RNA. To identify the structural determinants required for its function, we constructed mutant scRNAs in which individual domains or conserved nucleotides were deleted, and their importance was assayed in vivo. The results demonstrated that domain IV of scRNA is necessary to maintain cell viability. On the other hand, domains I and II were not essential for vegetative growth but were preferentially required for the RNA to achieve its active structure, and assembled ribonucleoprotein between Ffh and scRNA is required for sporulation to proceed. This view is highly consistent with the fact that the presence of domains I and II is restricted to sporeforming B. subtilis scRNA among eubacterial SRP RNA-like RNAs.  相似文献   

7.
8.
9.
Data are presented on the partial purification and properties of a 5 S ribosomal RNA maturation nuclease, termed RNase M5, from Bacillus subtillis 168. RNase M5 specifically cleaves 21 and 42 nucleotides, respectively, from the 5' and 3' termini of a 5 S rRNA precursor to yield the mature (116 nucleotides) 5 S rRNA. The cleavage is endonucleolytic with the formation of 5'-phosphoryl and 3'-hydroxyl groups. Enzyme action requires divalent cations, which may be furnished by either certain metals or by polyamines. The activity is separable into two components both of which are required for activity. It appears that the same nuclease excises the 5'- and 3'-terminal segments since preparations lose the capacity to modify the two termini with an identical first order thermal decay rate. Certain features of the rRNA precursor which may be involved in cognitive interaction with RNase M5 are discussed.  相似文献   

10.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

11.
Small cytoplasmic RNA (scRNA) is a metabolically stable homologue of mammalian SRP RNA that contains an Alu-like domain. The Bacillus subtilis histone-like protein HBsu can bind this domain. We demonstrate here that repressing the level of HBsu results in slow growth and the accumulation of precursor of beta-lactamase fusion proteins having the signal sequence of alkaline protease, penicillin binding protein 5* (PBP5*) or CGTase. The degree of the translocation defect varied among the various signal sequences tested. A pulse-chase experiment showed that processing the alpha-amylase signal sequence is significantly inhibited in HBsu-depleted cells. Northern blot analysis indicated that repressing the HBsu gene induces scRNA upregulation, indicating that the defective translocation of presecretory proteins is not due to a reduced scRNA level. The data presented here suggest that HBsu plays a pivotal role in SRP function rather than simply stabilizing the other SRP components such as scRNA.  相似文献   

12.
13.
An enzyme activity specific for UV-DNA1 was found in the extract of Bacillus subtilis(Marburg 168). The enzyme preparation obtained from the extract by ammonium sulfate precipitation acts on UV-DNA endonucleolytically and induces single strand breaks. The number of single strand breaks introduced in DNA is proportional to UV dose.  相似文献   

14.
15.
Bacillus subtilis Marburg TI (thy,trpC2) has at least four endonuclease activities as assayed by measuring the conversion of single-stranded circular f1 DNA to the linear form by agarose gel electrophoresis. One of them, which is specific for single-stranded DNA (named endonuclease MII), was purified about 320 times by two chromatographic steps and gel filtration, thereby eliminating exonuclease and phosphomonoesterase activities. This activity requires divalent cations but does not require ATP. The molecular weight estimated by gel filtration was about 57,000 daltons. The cleavage products have 5'-phosphoryl termini. At low concentrations, double-stranded DNA is not split to any detectable extent. At high concentrations, however, double-stranded superhelical DNA is attacked to yield open-circular and linear DNA's. The activity of the enzyme towards single-stranded circular DNA relative to that towards double-stranded linear DNA was calculated to be approximately 5,000:1 by comparing the initial rates of introducing single-strand breaks into the DNA's.  相似文献   

16.
Small cytoplasmic RNA (scRNA) is metabolically stable and abundant in Bacillus subtilis cells. Consisting of 271 nucleotides, it is structurally homologous to mammalian signal recognition particle RNA. In contrast to 4.5 S RNA of Escherichia coli, B. subtilis scRNA contains an Alu domain in addition to the evolutionarily conserved S domain. In this study, we show that a 10-kDa protein in B. subtilis cell extracts has scRNA binding activity at the Alu domain. The in vitro binding selectivity of the 10-kDa protein shows that it recognizes the higher structure of the Alu domain of scRNA caused by five consecutive complementary sequences in the two loops. Purification and subsequent analyses demonstrated that the 10-kDa protein is HBsu, which was originally identified as a member of the histone-like protein family. By constructing a HBsu-deficient B. subtilis mutant, we showed that HBsu is essential for normal growth. Immunoprecipitating cell lysates using anti-HBsu antibody yielded scRNA. Moreover, the co-precipitation of HBsu with (His)6-tagged Ffh depended on the presence of scRNA, suggesting that HBsu, Ffh, and scRNA make a ternary complex and that scRNA serves as a functional unit for binding. These results demonstrated that HBsu is the third component of a signal recognition particle-like particle in B. subtilis that can bind the Alu domain of scRNA.  相似文献   

17.
We have fractionated from extracts of Bacillus subtilis the DNase activity specific for single-stranded DNA; the activity separates in two main fractions on Sephadex G-200, a larger one (Mr greater than 400 000) and a smaller one (Mr approximately 30 000). We have purified the smaller, more abundant fraction nearly 3000-fold. The purified enzyme has a pH optimum close to 8, is activated by Ca2+, and is inhibited by EDTA; the enzyme hydrolyses single-stranded DNA at a rate approximately 40 times greater than double-stranded DNA. The mode of action is endonucleolytic on both substrates, but the possiblility that the two activities may reside on different molecules is not ruled out. The products have 5'-P and 3'-OH ends. The enzyme is different from those purified from the culture media of the same organism in several respects; the latter are all extracellular enzymes, they are not specific for single-stranded DNA (except one) and have all an exonucleolytic mode of action.  相似文献   

18.
Use of specific endonuclease cleavage in RNA sequencing.   总被引:8,自引:8,他引:0       下载免费PDF全文
Nonradioactive RNA fragments may be sequenced by incorporation of (3H)-label into 3'-terminal positions, controlled digestion with specific ribonucleases, and separation according to size of the digestion products on polyethyleneimine- (PEI-) cellulose thin layers. This combination of techniques allows one to measure accurately distances of specific cleavage sites from the labeled terminal positions. The cleavage specificities of RNases T1, U2, and A are utilized to identify the positions of G, A, and pyrimidine residues respectively. C and U may be distinguished by mobility differences on PEI-cellulose thin layers at ph 2.6. The procedure is simple, rapid, and highly sensitive; as little as 0.5 - 1 microgram of a RNA of the size of tRNA will be needed to sequence all fragments in a complete RNase digest.  相似文献   

19.
The kinetics of hydrolysis and transpeptidation of the synthetic substrate diacetyl-L-lysyl-D-alanyl-D-alanine and of the natural substrate UDP-acetylmuramyl pentapeptide and related compounds catalyzed by the D-alanine carboxypeptidases of Bacillus subtilis and Bacillus stearothermophilus in the presence of the nucleophiles hydroxylamine or glycine have been examined. These kinetic data suggest that an acyl-enzyme intermediate is formed in the first step of the reaction and that the transpeptidation is the consequence of the partitioning of this intermediate between water and the nucleophile in the second step.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号