首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This paper describes a generally applicable method for quantitative investigation of ligand-dependent binding of a regulatory protein to its target DNA at equilibrium. It is used here to analyse the coupled binding equilibria of cAMP receptor protein from Escherichia coli K12 (CRP) with DNA and the physiological effector cAMP. In principle, the DNA binding parameters of CRP dimers with either one or two ligands bound are determinable in such an approach. The change of protein fluorescence was used to measure CRP binding to its recognition sequence in the lac control region and to non-specific DNA. Furthermore, the binding of cAMP to preformed CRP-DNA complexes was independently studied by equilibrium dialysis. The data were analysed using a simple interactive model for two intrinsically identical sites and site-site interactions. The intrinsic binding constant K and the co-operativity factor alpha for binding of cAMP to free CRP depend only slightly on salt concentration between 0.01 M and 0.2 M. In contrast, the affinity of cAMP for CRP pre-bound to non-specific DNA increases with the salt concentration and the co-operativity changes from positive to negative. This results from cation rebinding to the DNA lattice upon forming the cAMP-CRP-DNA complex from cAMP and the pre-formed CRP-DNA complex. The CRP-cAMP1 complex shows almost the same affinity for specific and non-specific DNA as the CRP-cAMP2 complex, and both displace the same number of cations. It is concluded that the allosteric activation of CRP is induced upon binding of the first cAMP. These results are used to estimate the occupation of the CRP site in the lac control region in relation to the cAMP concentration in vivo. Under physiological conditions the lac promoter is activated by the CRP dimer complexed with only one cAMP. Furthermore, a model for the differential activation of various genes expressed under catabolite repression is presented and discussed.  相似文献   

4.
5.
6.
7.
G S Tan  P Kelly  J Kim  R M Wartell 《Biochemistry》1991,30(20):5076-5080
The secondary structures of the cAMP receptor protein (CRP), a complex of CRP and cAMP, and a cAMP-independent receptor protein mutant (CRP*141 gln) were examined by using Raman spectroscopy. Spectra were obtained from CRP and CRP*141 gln dissolved in 0.3 M NaCl and 30 mM sodium phosphate at protein concentrations of 30-40 mg/mL. CRP and CRP.cAMP1 were compared at lower protein concentrations (10-12 mg/mL) in a solvent of 0.35 M NaCl and 20 mM sodium phosphate. Raman analysis indicates that CRP structural changes induced by one bound cAMP or by the Gly to Gln mutation at residue 141 are small. Spectra of the three CRP samples are essentially identical from 400 to 1900 cm-1. This result differs from the Raman spectroscopy study of CRP and CRP.cAMP2 cocrystals [DeGrazia et al. (1990) Biochemistry 29, 3557]. The latter work showed spectral differences between CRP and CRP.cAMP2 consistent with alterations in the protein conformation. These studies indicate that CRP and CRP.cAMP1 in solution are similar in structure and differ from CRP.cAMP2 cocrystals. Protease digestion and a DNA binding assay were also employed to characterize the wild-type and mutant proteins. CRP*141 gln exhibited the same conformational characteristics of previously reported cAMP-independent mutant proteins. It was sensitive to proteolytic attack in the absence of cAMP, or upon addition of cGMP. In the absence of cAMP, both wild-type and mutant CRPs bound noncooperatively to a 62 bp lac promoter DNA. The equilibrium constants were approximately 10(6) M-1 in 0.1 M Na+. CRP*141 gln had a 2-4-fold higher affinity for the 62 bp DNA than CRP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
Baker CH  Tomlinson SR  García AE  Harman JG 《Biochemistry》2001,40(41):12329-12338
We investigated the characteristics of CRP having amino acid substitutions at position 99. Analysis of amino acid residue proximity to cAMP in molecular dynamics (MD) simulations of the CRP:(cAMP)(2) complex [García, A. E., and Harman, J. G. (1996) Protein Sci. 5, 62-71] showed repositioning of tyrosine 99 (Y99) to interact with the equatorial exocyclic oxygen atom of cAMP. To test the role of Y99 in cAMP-mediated CRP activation, Y99 was substituted with alanine (A) or phenylalanine (F). Cells that contained the WT or mutant forms of CRP induced beta-galactosidase in the presence of cAMP. Purified WT, Y99A, and Y99F CRP showed only a 3- to 4-fold difference in cAMP affinity. There were no apparent differences between the three forms of CRP in cAMP binding cooperativity, in CRP:(cAMP)(1) complex binding to lacP DNA, in the formation of CRP:cAMP:RNAP complexes at lacP, or in CRP efficacy in mediating lacP activity in vitro. The apo-form of Y99A CRP was more sensitive to protease than the apo-form of either WT CRP or Y99F CRP. Whereas the WT or Y99F CRP:(cAMP)(1) complexes were cleaved by protease at hinge-region peptide bonds, the Y99A CRP:(cAMP)(1) complex was cleaved at peptide bonds located at the subunit interface. The rates of subunit exchange for Y99A CRP, both in the apo-form and in a 1:1 complex with cAMP, were significantly greater than that measured for WT CRP. The results of this study show that tyrosine 99 contributes significant structural stability to the CRP dimer, specifically in stabilizing subunit association.  相似文献   

11.
12.
Lin SH  Lee JC 《Biochemistry》2002,41(39):11857-11867
The binding of adenosine 3',5'-cyclic monophosphate (cAMP) and its nonfunctional analogue, guanosine 3',5'-cyclic monophosphate (cGMP), to the adenosine 3',5'-cyclic monophosphate receptor protein (CRP) from Escherichia coli was investigated by means of fluorescence and isothermal titration calorimetry (ITC) at pH 7.8 and 25 degrees C. A biphasic fluorescence titration curve was observed, confirming the previous observation reported by this laboratory (Heyduk and Lee (1989) Biochemistry 28, 6914-6924). However, the triphasic titration curve obtained from the ITC study suggests that the cAMP binding to CRP is more complicated than the previous conclusion that CRP binds sequentially two molecules of cAMP with negative cooperativity. The binding data can best be represented by a model for two identical interactive high-affinity sites and one low-affinity binding site. Unlike cAMP, the binding of cGMP to CRP exhibits no cooperativity between the high-affinity sites. The effects of mutations on the bindings of cAMP and cGMP to CRP were also investigated. The eight CRP mutants studied were K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L. These sites are located neither in the ligand binding site nor at the subunit interface. The binding was monitored by fluorescence. Although these mutations are at a variety of locations in CRP, the basic mechanism of CRP binding to cyclic nucleotides has not been affected. Two cyclic nucleotide molecules bind to the high-affinity sites of CRP. The cooperativity of cAMP binding is affected by mutation. It ranges from negative to positive cooperativity. The binding of cGMP shows none. With the exception of the T127L mutant, the free energy change for DNA-CRP complex formation increases linearly with increasing free energy change associated with the cooperativity of cAMP binding. This linear relationship implies that the protein molecule modulates the signal in the binding of cAMP, even though the mutation is not directly involved in cAMP or DNA binding. In addition, the significant differences in the amplitude of fluorescent signal indicate that the mutations also affect the surface characteristics of CRP. These results imply that these mutations are not perturbing specific pathways of signal transmission. Instead, these results are more consistent with the concept that CRP exists as an ensemble of native states, the distribution of which can be altered by these mutations.  相似文献   

13.
A Baudras  B Blazy  M Takahashi 《Biochimie》1983,65(7):437-440
Specific-site binding of the cAMP . CRP complex to the control region of the lactose operon of E. coli was measured directly. All of the protein molecules did bind specifically, and the binding constant for the major CRP site was not dependent on the length (62, 219 or 301 base pairs) of the DNA fragments used. Comparing the values of the binding constant measured for the major site and for the weaker "operator" CRP site, and referring to the published "consensus sequence" derived from the known CRP sites in a series of operons, we suggest that two sub-sites support additive contribution to the total binding free energy.  相似文献   

14.
15.
Mechanism of CRP-mediated cya suppression in Escherichia coli.   总被引:9,自引:2,他引:7  
Escherichia coli strain NCR30 contains a cya lesion and a second-site cya suppressor mutation that lies in the crp gene. NCR30 shows a pleiotropic phenotypic reversion to the wild-type state in expressing many operons that require the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex for positive control. In vivo beta-galactosidase synthesis in NCR30 was sensitive to glucose-mediated repression, which was relieved not only by cAMP but also by cyclic GMP and cyclic CMP. The CRP isolated from NCR30 differed from the protein isolated from wild-type E. coli in many respects. The mutant protein bound cAMP with four to five times greater affinity than wild-type CRP. Protease digestion studies indicated that native NCR30 CRP exists in the cAMP-CRP complex-like conformation. The protein conferred a degree of cAMP independence on the in vitro synthesis of beta-galactosidase. In addition, the inherent positive control activity of the mutant protein in vitro was enhanced by those nucleotides that stimulate in vivo beta-galactosidase synthesis in NCR30. The results of this study supported the conclusion that the crp allele of NCR30 codes for a protein having altered effector specificity yet capable of promoting positive control over catabolite-sensitive operons in the absence of an effector molecule.  相似文献   

16.
17.
18.
Tomlinson SR  Tutar Y  Harman JG 《Biochemistry》2003,42(13):3759-3765
A cyclic nucleotide-binding pocket of the CRP dimer is composed of amino acid residues contributed by both subunits. Leucine (L) 124 of one subunit packs against the adenine ring of cAMP bound to the opposing subunit. We have undertaken a study designed to evaluate the role of L124 in CRP allostery. Wild-type (WT) apo-CRP is a 47 kDa protease-resistant dimer composed of identical subunits that exhibits a biphasic isotherm in cAMP titration studies. The WT CRP-cAMP complex is a protease-sensitive dimer degraded by protease to a dimer core that ranges between 26.5 and 30.5 kDa. Substitution of L124 with isoleucine (I), valine (V), cysteine (C), or alanine (A) generated a series of CRP variants that exhibited unique differences in apo-CRP resistance to protease, the mass of the core fragments generated in protease digestion reactions, cAMP-mediated allostery, and CRP-cAMP complex functionality. Differences in the affinity of the position 124 CRP variants for cAMP were observed. The binding constants that drive the formation of the WT and L124I CRP-cAMP complexes deviated by not more than a factor of 1.5. In contrast, the L124V, L124A, and L124C forms of CRP exhibited both a decreased K(cAMP1)(app) and an increased K(cAMP2)(app) to produce 2.4-, 55-, and 204-fold reductions, respectively, in the difference between these two parameters compared to that observed for WT CRP. The data indicate that the van der Waals volume and/or the hyrophobicity of the L124 side chain are important determinants of CRP cAMP binding properties and affect, either directly or indirectly, cAMP-mediated conformation changes in CRP.  相似文献   

19.
20.
Oligonucleotide-directed mutagenesis was employed to generate mutants of the cAMP receptor protein (CRP) of Escherichia coli. The mutant proteins were purified to homogeneity and tested for stability and DNA binding. It is shown that mutations at the position of Arg180 abolish specific DNA binding, whereas those at the position Arg185 have very little effect. Both positions have previously been implicated as crucial for the specific interaction between CRP and DNA. The Ser128----Ala mutant shows a slight reduction in DNA binding affinity relative to wild-type. All mutants investigated show similar stability profiles to wild-type CRP with respect to thermolysin proteolysis as a function of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号