首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

2.
The alphoid repeat DNA on chimpanzee chromosome 22 was compared with alphoid repeat DNA on its human homologue, chromosome 21. Hybridization of different alphoid probes under various conditions of stringency show that the alphoid repeats of chimpanzee chromosome 22 are not closely related to those of human chromosome 21. Sequence analysis of cloned dimer and tetramer EcoRI fragments from chimpanzee chromosome 22 confirm the low overall level of homology, but reveal the presence of several nucleotide changes which are exclusive to the chromosome 21 subfamily of human alphoid DNA. Southern blot analysis of alphoid repeat DNA on the chimpanzee X chromosome suggests this subfamily has been strongly conserved during and since the separation of chimpanzee and man although the two subfamilies can be distinguished on the basis of Taq I restriction fragments.  相似文献   

3.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

4.
We have used a recombinant DNA library constructed from flow-sorted human chromosome 8 as a source of single-copy human probes. These probes have been screened for restriction fragment length polymorphism (RFLP) by hybridization to Southern transfers of genomic DNA from five unrelated individuals. We have detected six RFLPs distributed among four probes after screening 741 base pairs for restriction site variation. These RFLPs all behave as codominant Mendelian alleles. Two of the probes detect rare variants, while the other two detect RFLPs with PIC values of .36 and .16. Informative probes will be useful for the construction of a linkage map for chromosome 8 and for the localization of mutant alleles to this chromosome.  相似文献   

5.
We have characterized a panel of somatic cell hybrid cell lines which contain different portions of human chromosome 10. Genomic DNA from the somatic cell hybrids was tested for hybridization with each of an ordered set of probes used previously to construct a genetic map of chromosome 10, as well as several additional probes, previously localized by in situ hybridization. Hybridization of an unmapped probe to the cell line DNAs can be used to determine its most likely position on the chromosome relative to the mapped set of probes. Genomic DNA from two of the cell lines has been used to construct region-specific cosmid and bacteriophage libraries, and clones derived from these libraries were localized by hybridization to the panel of hybrid cell lines. Several of these probes reveal restriction fragment length polymorphisms which have been genetically mapped. Three of the probes map near the locus for multiple endocrine neoplasia type 2A, and one of these probes, BG-JC353 (D10S167), maps between RBP3 and TB14.34 (D10S34). Another probe, CRI-J282 (D10S104), is close to the FNRB locus. The panel of hybrid cell lines is thus useful for rapidly localizing unmapped probes and as a source of DNA for the construction of recombinant libraries derived from specific regions of the chromosome.  相似文献   

6.
Oberlé  I.  Camerino  G.  Kloepfer  C.  Moisan  J. P.  Grzeschik  K. H.  Hellkuhl  B.  Hors-Cayla  M. C.  Van Cong  N.  Weil  D.  Mandel  J. L. 《Human genetics》1986,72(1):43-49
Summary We have characterized 19 DNA fragments originating from the human X chromosome. Most of them have been isolated from an X chromosome genomic library (Davies et al. 1981) using a systematic screening procedure. These DNA probes have been used to search for restriction fragment length polymorphisms (RFLP). The frequency of restriction polymorphisms (1 per 350 bp analysed) was lower than expected from data obtained with autosomal fragments. The various probes have been mapped within 12 subchromosomal regions using a panel of human-rodent hybrid cell lines. The validity of the panel was established by hybridization experiments performed with 27 X-specific DNA probes, which yielded information on the relative position of translocation break-points on the X chromosome. The DNAs from the various hybrid lines are blotted onto a reusable support which allows one to quickly map any new X-specific DNA fragment. The probes already isolated should be of use to map unbalanced X chromosome aberrations or to characterize new somatic cell hybrid lines. The probes which detect RFLPs define new genetic markers which will help to construct a detailed linkage map of the human X chromosome, and might also serve for the diagnosis of carriers or prenatal diagnosis.  相似文献   

7.
Summary DiGeorge syndrome (DGS) is a human developmental defect of the structures derived from the third and fourth pharyngeal pouches. It apparently arises due to deletion of 22q11. We describe a strategy for the isolation of DNA probes for this region. A deleted chromosome 22, which includes 22q11, was flow-sorted from a lymphoblastoid cell line of a patient with cat eye syndrome and used as the source of DNA. A DNA library was constructed from this chromosome by cloning into the EcoR1 site of the vector Lambda gt10. Inserts were amplified by PCR and mapped using a somatic cell hybrid panel of this region. Out of 32 probes, 14 were mapped to 22q11. These probes were further sublocalised within the region by dosage analysis of DGS patients, and by the use of two new hybrid cell lines which we have produced from DGS patients. One of these lines (7939B662) contains the altered human chromosome segregated from its normal homologue. This chromosome 22 contains an interstitial deletion in 22q11, and will be useful for localising further probes to the DGS region.  相似文献   

8.
Summary A library of DNA Sequences cloned in lambda phage has been prepared from DNA of chromosomes sorted by cytofluorimetry to give enrichment for chromosome 4. Five sequences have been assigned to chromosome 4 using a panel of hybrid cells, and each has been localised relative to a translocation breakpoint at 4q26. Each of the probes gives a Southern blot pattern which indicates that it does not cross-hybridise with sequences found on other human chromosomes. Three of the probes reveal frequent restriction fragment length polymorphisms (RFLPs) and are useful for linkage analysis.  相似文献   

9.
The recurrent translocation breakpoint on chromosome 22 of neuroepithelioma has been localized between two probes, D22S1 and D22S15, by both in situ hybridization and somatic cell hybrids. These two probes have further been shown to be genetically linked at theta = 0.0 and a lod score of 5.3. The two probes were unaffected by a partial deletion of the chromosome 22 long arm of a meningioma, showing that the meningioma locus is distal to that of the neuroepithelioma.  相似文献   

10.
Using pulsed field gel electrophoresis with pulse time of 120 sec, eight chromosomal DNA molecules from clone 7G8 of the Plasmodium falciparum Brazilian isolate IMTM22 were resolved. A ninth chromosomal molecule which did not enter the gel was identified at the slot by hybridization to two DNA probes and by restriction enzyme analysis. Thirteen parasite DNA sequences were mapped to the nine chromosomes, with at least one sequence mapped to each chromosome. The restriction enzyme NotI appeared to produce only one cut in the entire IMTM22 genome.  相似文献   

11.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

12.
Summary Prenatal diagnosis by chorion biopsy in the first trimester of pregnancy has advantages over second trimester amniocentesis because diagnosis can be achieved at 9–12 weeks gestation, reducing prenatal anxiety and avoiding the trauma of late abortion. DNA can be prepared from chorionic villus biopsies in sufficient quantity and purity for use in prenatal diagnosis systems using specific DNA probes hybridised to restriction endonuclease digests.DNA probes derived from the Y chromosome have been used to determine fetal sex. The use of such probes means that the chromosomal sex of the fetus can be identified more quickly than by chromosome preparation and more accurately than by sex chromatin staining, and has the additional advantage that the same DNA preparation can be used for other diagnostic tests. A dot hybridisation method has been successfully used to provide even more rapid results than conventional hybridisation to Southern blots of restriction endonuclease digests.There is a risk that Y chromosome-specific DNA probes for sex determination may be subject to error if the parents have extreme Y chromosome variants such as a small or non-fluorescent Y or a Y autosome chromosome translocation. The precise extent to which such chromosome variants may lead to error has been investigated. Even extreme Y chromosome variants totally lacking fluorescence were identified as male by the cloned probes used. However, Y autosome translocations carried by females could cause error if not identified in the parents. The value of the probes has been confirmed provided that parental chromosomes and DNA are examined in parallel with the chorionic biopsy material  相似文献   

13.
Summary The iron storage ferritin light-chain gene exhibits multiple restriction enzyme fragments which have been mapped by analyzing sorted human chromosomes. A dual laser chromosome sorter was used to construct spot-blot filter panels representing 22 chromosome fractions. Hybridization of radiolabeled human ferritin-L gene probe to spot-blot panels revealed the ferritin-L gene on more than one chromosome. Miniaturized restriction enzyme analysis was used to map each of the ferritin-L restriction fragments uniquely to one of three chromosomes. This combination of sorted chromosome analyses provides a rapid method to map homologous DNA sequences located on more than one chromosome.  相似文献   

14.
Thirty-two probes for CpG islands of the distal long arm of the human X chromosome have been identified. From a genomic library of DNA of the hamster-human cell hybrid X3000.1 digested with the rare cutter restriction enzyme EagI, 53 different human clones have been isolated and characterized by methylation and sequence analysis. The characteristic pattern of DNA methylation of CpG islands at the 5' end of genes of the X chromosome has been used to distinguish between EagI sites in CpG islands versus isolated EagI sites. The sequence analysis has confirmed and completed the characterization showing that sequences at the 5' end of known genes were among the clones defined CpG islands and that the non-CpG islands clones were mostly repetitive sequences with a non-methylated or variably methylated EagI site. Thus, since clones corresponding to repetitive sequences can be easily identified by sequencing, such libraries are a very good source of CpG islands. The methylation analysis of 28 different new probes allows to state that demethylation of CpG islands of the active X and methylation of those on the inactive X chromosome are the general rule. Moreover, the finding, in all instances, of methylation differences between male and female DNA is in very strong support of the notion that most genes of the distal long arm of the X chromosome are subject to X inactivation.  相似文献   

15.
Isolation of polymorphic DNA segments from human chromosome 21.   总被引:23,自引:2,他引:21       下载免费PDF全文
A somatic cell hybrid line containing only human chromosome 21 on a mouse background has been used as the source of DNA for construction of a recombinant phage library. Individual phages containing human inserts have been identified. Repeat-free human DNA subclones have been prepared and used to screen for restriction fragment length polymorphisms to provide genetic markers on chromosome 21. Nine independently isolated clones used as probes identified a total of 11 new RFLPs. Four of the DNA probes recovered from the library have been mapped unequivocally to chromosome 21 using a panel of somatic cell hybrid lines. A fifth probe detected an RFLP on chromosome 21 as well as sequences on other chromosomes. This set of RFLPs may now form the basis for construction of a genetic linkage map of human chromosome 21.  相似文献   

16.
Molecular probes that contain DNA flanking CpG-rich restriction sites are extremely valuable in the construction of physical maps of chromosomes and in the identification of genes associated with hypomethylated HTF (HpaII tiny fragment) islands. We describe a new approach to the isolation and characterization of linking clones in arrayed chromosome-specific cosmid libraries through the large-scale semiautomated restriction mapping of cosmid clones. We utilized a cosmid library representing human chromosome 11q12-11qter and carried out automated restriction enzyme analysis, followed by regional localization to chromosome 11q using high-resolution in situ suppression hybridization. Using this approach, 165 cosmid linking clones containing one or more NotI, BssHII, SfiI, or SacII sites were identified among 960 chromosome-specific cosmids. Furthermore, this analysis allowed clones containing a single site to be distinguished from those containing clusters of two or more rare sites. This analysis demonstrated that more than 75% of cosmids containing a rare restriction site also contained a second rare restriction site, suggesting a high degree of CpG-rich restriction site clustering. Thirty chromosome 11q-specific cosmids containing rare CpG-rich restriction sites were regionally localized by high-resolution fluorescence in situ suppression hybridization, demonstrating that all of the CpG-rich sites detected by this method were located in bands 11q13 and 11q23. In addition, the distribution of (CA)n repetitive sequences was determined by hybridization of the arrayed cosmid library with oligonucleotide probes, confirming a random distribution of microsatellites among CpG-rich cosmid clones. This set of reagent cosmid clones will be useful for physical linking of large restriction fragments detected by pulsed-field gel electrophoresis and will provide a new and highly efficient approach to the construction of a physical map of human chromosome 11q.  相似文献   

17.
The genomic subtraction method representational difference analysis (RDA) was used to identify male-specific restriction fragments in the dioecious plant Silene latifolia. Male-specific restriction fragments are linked to the male sex chromosome (the Y chromosome). Four RDA-derived male-specific restriction fragments were used to identify polymorphisms in a collection of X-ray-generated mutant plants with either hermaphroditic or asexual flowers. Some of the mutants have cytologically detectable deletions in the Y chromosome that were correlated with loss of male-specific restriction fragments. One RDA-derived probe detected a restriction fragment present in all mutants, indicating that each has retained Y chromosomal DNA. The other three probes detected genomic fragments that were linked in a region deleted in some hermaphroditic and some asexual mutants. Based on the mutant phenotypes and the correlation of cytologically visible deletions with loss of male-specific restriction fragments, these markers were assigned to positions on the Y chromosome close to the carpel suppression locus. This RDA mapping also revealed a Y-linked locus, not previously described, which is responsible for early stamen development.  相似文献   

18.
To isolate DNA sequences unique to chromosome 21 we have used a recombinant-DNA library, constructed from a mouse-human somatic-cell hybrid line containing chromosome 21 as the only human chromosome. Individual recombinant phage containing human DNA inserts were identified by their hybridization to total human DNA sequences and by their failure to hybridize to total mouse DNA sequences. A repeat-free human DNA fragment was then subcloned from each of 14 such recombinant phage. An independent somatic-cell hybrid was used to assign all 14 subcloned fragments to chromosome 21. Thirteen of the fragments have been regionally mapped using a somatic-cell hybrid containing a human 21 translocation chromosome. Two probes map proximal to the 21q21.2 translocation breakpoint, and 11 probes map distal to this breakpoint, placing them in the region 21q21.2-21q22. One of seven probes used to screen for restriction-fragment-length polymorphisms recognized polymorphic DNA fragments when hybridized to genomic DNA from unrelated individuals. These 14 unique probes provide useful tools for studying the structure and function of human chromosome 21 as well as for investigating the molecular biology of Down syndrome.  相似文献   

19.
Remi-RFLP Mapping in the Dictyostelium Genome   总被引:6,自引:1,他引:5  
A. Kuspa  W. F. Loomis 《Genetics》1994,138(3):665-674
A set of 147 Dictyostelium discoideum strains was constructed by random integration of a vector containing rare restriction sites. The strains were generated by transformation using restriction enzymemediated integration (REMI) which results in the integration of linear DNA fragments into randomly distributed genomic restriction sites. Restriction fragment length polymorphism (RFLP) was generated in a single genomic site in each strain. These REMI-RFLP strains were used to confirm gene linkages previously supported by two other physical mapping techniques: yeast artificial chromosome (YAC) contig construction, and megabase-scale restriction mapping. New linkages were uncovered when two or more hybridization probes identified the same RFLP fragments. Probes for 100 genes have marked 53% of the RFLPs, representing greater than 22 Mb of the 40 Mb Dictyostelium genome. Alignment of these and other large fragments along each chromosome should lead to a complete physical map of the Dictyostelium genome.  相似文献   

20.
Closely linked restriction fragment length polymorphisms (RFLPs) are potentially useful as diagnostic markers of genetic defects, and, in principle, RFLPs can be employed to construct a complete linkage map of the human genome. On the X chromosome, linkage studies are particularly rewarding because in man more than 120 X-linked genes are known. Thus, it is probable that each X-specific RFLP will be of use as a genetic marker of one or several X-linked disorders. To facilitate the search for closely linked RFLPs, we have regionally assigned 16 cloned DNA sequences to various portions of the human X chromosome, employing a large panel of somatic cell hybrids. These probes have been used to correlate genetic and physical distances on Xp, and it can be extrapolated from these data that the number and distribution of available Xq sequences will also suffice to span the long arm of the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号