首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the role of low UV‐B radiation in modulating the response of antioxidants to ozone, 4‐year‐old pine ( Pinus sylvestris L.) and spruce ( Picea abies L.) seedlings potted in natural soil, were exposed in phytochambers to fluctuating ozone concentrations between 9 and 113 nl 1−1 according to field data recorded at Mt Wank (1175 m above sea level, Bavaria, Germany) and two‐times ambient O3 levels. UV‐B radiation was either added at a biologically effective level of ca 1.2 kJ m−2 day−1 , which is close to that found in March at Mt Wank, or was excluded by filters (<0.08 kJ m−2 day−1). After one growth phase current‐year needles were collected and analysed for antioxidative enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6; guaiacol peroxidase, POD, EC 1.11.1.7) and soluble antioxidants (ascorbate, glutathione). CAT, POD, ascorbate and glutathione, but not SOD, were increased in needles of both species in response to twice ambient O3 levels. UV‐B radiation in the presence of ambient O3 caused an increase in total SOD activity in spruce but had no effects on antioxidants in pine. Twice ambient O3 levels together with low UV‐B radiation counteracted the O3‐induced increases in ascorbate and CAT in pine but not in spruce. Under these conditions spruce needles showed the highest antioxidative protection and revealed no indication of lipid peroxidation. Pine needles exposed to UV‐B and elevated O3 levels showed elevated lipid peroxidation and a 5‐fold increase in dehydroascorbate, suggesting that this species was less protected and suffered higher oxidative stress than spruce.  相似文献   

2.
3.
Photosynthetically active radiation (PhAR) is apparently the environmental factor having the greatest influence on leaf thickness for Plectranthus parviflorus Henckel (Labiatae). A four-fold increase in leaf thickness from 280 to 1170 μm occurred as the PhAR was raised from 1.3 to 32.5 mol m−2 day−1. Compared to a constant PhAR of 2.5 mol m−2 day−1, a PhAR of 32.5 mol m−2 day−1 for one week during the first week (with return to 2.5 mol m−2 day−1 during the second and third weeks) led to an increase in final leaf thickness by 323 μm (to 802 μm). When increased PhAR was applied during the second week the increase in final thickness over the control was 217 μm, and when increased PhAR was applied during the third week it was 99 μm. However, leaf thickness was not simply responding to total daily PhAR, since a leaf 450 μm thick could occur at a low instantaneous PhAR for a long daytime (total daily PhAR of 1.5 mol m−2 day−1) and at a high PhAR for a short daytime (4.5 mol m−2 day−1). Total daily CO2 uptake (net photosynthesis) was approximately the same in the two cases, suggesting that this is an important factor underlying the differences in leaf thickness. Leaf thickness is physiologically important, since thicker leaves tend to have greater mesophyll surface area per unit leaf area ( A mes/ A ) and hence higher photosynthetic rates.  相似文献   

4.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

5.
Metabolism of a desert stream   总被引:8,自引:0,他引:8  
SUMMARY. Rates of photosynthesis and community respiration were determined for benthic assemblages in Sycamore Creek, a Sonoran Desert stream in Arizona. Benthos in this stream can be separated into (1) mats of Cladophora glomerata and associated epiphytes and (2) assemblages of epipelic diatoms and blue-green algae. Community respiration and net photosynthesis were measured for these assemblages using submerged light-dark chambers in situ . Multiple regression analysis was used to predict (1) gross photosynthesis as a function of photosynthetically active radiation, temperature and chlorophyll-α concentration; and (2) community respiration as a function of temperature and biomass.
Calculations suggest that Sycamore Creek is autotrophic during the summer ( P/R = 1.7) and that the rates of gross photosynthesis ( P =8.5 g O2 m−2 day−1) and community respiration ( R = 5.1 g O2 m−2 day−1) are high for a small stream. Considerable difference exists between the Cladophora mat assemblages, in which mean P is 12.5gO2m−2 day−1and the P/R ratio is 2.3, and the epipelic assemblages in which mean P is 4.4 g O2m−2 day−1 and P/R is 0.96. The high rate of gross photosynthesis, low litter inputs, high biomass of algae and the intermittent but severe floods that characterize Sycamore Creek indicate that this stream and other similar desert streams are net exporters of organic matter and are, thereby, truly autotrophic stream ecosystems.  相似文献   

6.
A depletion of the stratospheric ozone layer would result in an increased UV-B radiation, which could have harmful effects on marine organisms. The aim of this study was to determine the effects of an enhanced UV-B radiation (280–320 nin) on the motility and growth in four Swedish phytoplanklon species. The different plankton species were exposed to different doses of UV-B radiation during growth. The growth of the motile dinoflagellates, Gyronidium aureolum Hulburt (Ba 6), and Prorocentrum minimum (Pav.) P. Schiller (Ba 12), was more sensitive to UV-B radiation than the non-motile diatoms Dityhim brightwellii (P. West) Grun (Ba 15) and Phaeodactylum tricornutum Bohlin (Ba 16). One week of UV-B radiation 2 h daily (159 J m−2 day−1), had a dramatic effect on the growth of the dinoflagellates, while the diatoms were nearly unaffected. On the other hand, when given higher intensity of UV-B radiation (312, 468 and 624 J m−2 day−1) during the initial phase of growth, also the growth of the diatom, D. brightwellii, was inhibited. Not only the growth but also the swimming speed of the dinoflagellates C. aureolum and P. minimum were affected by UV-B radiation. The speed decreased rapidly after 1–2 h of UV-B radiation (312 J m−2 day−1), and after longer irradiation times the dinoflagellates lost their motility. G. aureolum exposed to UV-B radiation, regained normal speed after two weeks of visible light.  相似文献   

7.
The aim of this work was to study the effect of ultraviolet-B (UV-B) exposure on oxidative status in chloroplasts isolated from soybean ( Glycine max cv . Hood). Chloroplasts were isolated from soybean leaves excised from either control seedlings or those exposed to 30 and 60 kJ m−2 day−1 of UV-B radiation for 4 days. Chloroplastic oxidative conditions were assessed as carbon-centered radical, carbonyl groups and ascorbyl radical content. Treatment with UV-B increased the carbon-centered radical-dependent EPR signal significantly by 55 and 100% in chloroplasts from leaves exposed to 30 and 60 kJ m−2 day−1 UV-B, respectively, compared to radical content in chloroplasts from control leaves. The content of carbonyl groups increased by 37 and 62% in chloroplasts isolated from soybean leaves irradiated for 4 days with 30 and 60 kJ m−2 day−1 UV-B, respectively. The content of soluble metabolites in isolated chloroplasts should not be taken as absolute in vivo values; however, these data are valuable for comparative studies. UV-B exposure did not significantly affect ascorbyl radical content compared to controls. The content of ascorbic acid and thiols in chloroplasts isolated from leaves exposed to 60 kJ m−2 day−1 UV-B was increased by 117 and 20.8%, respectively, compared to controls. Neither the content of total carotene nor that of β -carotene or α -tocopherol was affected by the irradiation. The results presented here suggest that the increased content of lipid radicals and oxidized proteins in the chloroplasts isolated from leaves exposed to UV-B could be ascribed to both the lack of antioxidant response in the lipid soluble fraction and the modest increase in the soluble antioxidant content.  相似文献   

8.
SUMMARY. 1. The life cycle of Ephemerella major Klapalek in a chalk trout stream in Belgium took 1 year. Emergence was highly synchronized with a flight period from mid-May to mid-June. Tiny nymphs occurred from June to late August.
2. The mean instantaneous growth rate was high in autumn (3.6% wet wt day−1), very low from November to February (0.8% wet wt day−1) and high until emergence (2.3% wet wt day−1); short day length seemed to be the major factor reducing growth rate during winter.
3. Mortality was close to zero during winter and 1.4—1.7% day−1during other seasons. Total mortality from egg to adult was 99.6%.
4. The annual production was about 9g wet wt m−2 year−1 and the annual P/ ratio was 7.5. There was good agreement between the production values estimated by four methods. Production rate was highest in May (13 mg wet wt m−2 day−1) and zero in February.  相似文献   

9.
Production and food intake by an herbivorous pupfish population ( Cyprinodon nevadensis amargosae ) living in the outflow of a thermal artesian well (Tecopa Bore) near Death Valley, California is described. Water issues from the ground at 47.5° C and cools 8.12° C before leaving the study area 300 m from the source. High stream temperatures restricted the pupfish population to some 41 % of the study area, with a resulting mean density of 89 individuals m−2 (range = 13 to 196m−2). Biomass estimates ranged from 7 kcal m−2 to 42 kcal m−2. The mean annual standing crop of pupfishes (24 kcal m−2) turned over about five times annually. Growth rates were highest in juveniles (♂= 9.5% day−1) and slowest in large adults (♀= 08% day−1). Monthly production ranged from 22 kcal m−2 in September to 3 kcal m−2 in July and August. Pupfish in Tecopa Bore fed on algae and detritus, ingesting 1941 kcal m−2 yr−1 or 17.5% of the annual net primary production. 119 kcal m−2 yr−1 was deposited in growth. This latter value is approximately ten times greater than values previously reported for large carnivorous fishes but is comparable lo values reported for herbivorous fishes under pond culture.  相似文献   

10.
In vitro shoots of cv. Doyenne ďHiver pear ( Pyrus communis L.) were irradiated under controlled environments for 6 h per day at 5 different levels of biologically effective UV-B radiation (UV-BBE). UV-B exposure caused a progressive increase in apical necrosis above background levels and stimulated leaf abscission. Shoots grown for 2 weeks at 7. 8 mol m−2 day −1 of photosynthetic photon flux (PPF) and treated with 8. 4 or 12. 0 kJ m−2 day −1 UV-BBE produced up to 4 times more ethylene than those given 2. 2 or 5. 1 kJ m−2 day−1 UV-BBE or untreated controls. Exposure of shoots to 12 kJ m−2 day −1 of UV-BBE caused an increase in free putreseine content after 4 to 14 days of irradiation. Shoots showed a decrease in CO2 uptake after 3 days of UV-B: thereafter, they appeared to recover their photosynthetic capacity. Under typical PPF conditions used in micropropagation (90 μmol m−2 S−1). 8. 4 kJ m−2 day −1 of UV-B radiation was injurious to realatively tender tissues of in vitro pear shoots: increasing the level of UV-BBE to 12 kJ m−2 day−1 produced even more adverse effects.  相似文献   

11.
A population of Tubifex tubifex in an organically rich stream was found to have an annual life-cycle with a prolonged period of reproductive activity throughout the winter and spring. Cocoons were produced mainly during the late winter and early spring. No cocoons were found during August and September, and there were few mature worms at this time.
The population density ranged between 5420 m−2 in mid-September and 613000 m −2 in mid-May. The maximum population biomass (Bmax) recorded was 106 g dry wt m−2 (March) and the minimum was 10 g dry wt m−2 (September). Total annual production (P) was 139 g dry wt m−2 and the average annual biomass ( B ) was 46 g dry wt m−2 giving an annual P/ B ratio of 3.0, and a P/Bmax ratio of 1.3.  相似文献   

12.
Blue-spotted trevally, Caranx bucculentus , were fed different rations of pilchard and prawn in order to investigate feeding and growth relationships. Maintenance rations at 25.5° C amounted to 3.7% B.W. day−1 and 2.7% B.W. day−1 for prawns and pilchards, respectively. Additional feeding experiments at 28.9° C yielded a maintenance ration of prawns of 3.8% B.W. day−1, suggesting there is very little if any temperature effect on the feeding-growth relationship over the range studied. Fish fed twice or more each day consumed about 7.3 ± 1.4% B.W. day−1.
Given the biomass of this trevally in Albatross Bay, Gulf of Carpentaria, and the contribution of prawns to its diet, we estimate consumption of commercial prawns at 25 ± 5 g.ha−1 day−1 or 11 g kg−1 day−1.  相似文献   

13.
Very high secondary production at a lake outlet   总被引:1,自引:0,他引:1  
SUMMARY. 1. Larvae and pupae of Simulium noelleri Fried, coated the concrete of parts of an artificial lake outlet in southern England.
2. In the first two (of three) summer generations, development was synchronous and this allowed the calculation of their secondary production by the instantaneous growth method. The production of the two summer generations was, respectively, 229.1 g C m−2 (7.4 g C m−2day−1) and 185.5 g C m−2 (8.8 g C m−2 day−1) The contribution of the third summer generation, and the overwintering generation, to annual production would be less than that of the first two summer generations. Nevertheless, annual production will have exceeded 500 g C m−2 at this site.
3. Larvae are suspension feeders and they captured the rich supply of particulate and dissolved organic material which passed over them after export from the lake. As food is brought to the larvae they only require space for attachment and can thus build up very high population densities (which exceeded 1 × 106 m−2 on some occasions during the summer). The high population densities result in a high biomass and hence in the high levels of production.  相似文献   

14.
1. The effects of emergent macrophytes on water turbidity and sediment resuspension in the shallow Kirkkojärvi basin of Lake Hiidenvesi were studied with sediment traps, and concomitant sediment and water samples. The study was conducted during May–August in three different zones of a stand of the emergent Typha angustifolia .
2. Within the stand (5 m from the edge), both the concentration of suspended solids and the rate of sediment resuspension were significantly lower than at the edge and outside the stand (5 m from the edge). The differences between the zones increased towards the end of summer together with the growing stem density. During the study period (82 days), 2210 g dw m−2 of sediment was resuspended in the outer zone. At the edge and in the inner zone, the corresponding numbers were 1414 and 858 g dw m−2, respectively.
3. With the resuspended sediment, 39.4 mg P  m−2 day−1 was brought to the water column outside the stand, 22.4 mg P  m−2 day−1 at the edge and 13.4 mg P  m−2 day−1 within the stand.
4. In early summer, the concentration of suspended solids had a highly significant positive effect on soluble reactive phosphorus (SRP) concentration in the water, whereas in late summer no effect was found. During the study period, phosphorus retention by emergent macrophyte stands corresponded to 3–5% of the present annual external phosphorus loading of the Kirkkojärvi basin.  相似文献   

15.
This is a study of the impact of increased ultraviolet-B (UV-B) radiation on the secondary chemistry of Salix myrsinifolia (dark-leaved willow). For nearly two decades, the loss of stratospheric ozone above the high latitudes of the Northern Hemisphere has increased UV-B radiation (280–320 nm) over the long-term mean. Willows (Salicaceae) are widely distributed in these northern regions. To determine the effects of increased UV-B radiation on willows, the plantlets of three clones of S. myrsinifolia were grown under ambient (3.6 kJ m−2 day−1) or enhanced (7.18 kJ m−2 day−1) UV-B irradiance. After the 2-week indoor experiment, the concentrations of UV-B-screening phenolics (flavonoids and phenolic acids) and low-UV-B-screening phenolics (salicylates and condensed tannins) in fresh leaves were investigated and the biomass of leaves, stems and roots was determined. As expected, the total amount of flavonoids in willow leaves clearly increased when plantlets were exposed to higher UV-B irradiation. However, the degree of increase of individual compounds varied: luteolin-7-glucoside, monomethyl-monocoumaryl-luteolin-7-glucoside and one myricetin derivative increased significantly, while the apigenin-7-glucuronide increased only slightly. The enhanced UV-B also increased the amount of p -hydroxycinnamic acid derivative. The UV-B effects on other phenolic acids and tannins were minor. In contrast to the other phenolics, the amounts of two salicylates, salicin and saligenin, decreased under enhanced UV-B irradiation. Our results indicate that the concentrations of both UV-B-screening and low-UV-B-screening phenolic compounds in leaves of S. myrsinifolia may vary in response to elevated UV-B radiation. However, while the UV-B protective flavonoids and phenolic acids accumulate during UV-B exposure, the concentrations of certain salicylates decrease.  相似文献   

16.
To test for the effects of far‐red light on preventing budset in Picea abies , seedlings of six populations originating from latitudes between 67°N and 47°N were grown for 4–8 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred, at the same temperature, to a daily regime of 8 h incandescent light (300 µmol m−2 s−1) followed by 16 h cool white fluorescent light (40 µmol m−2 s−1). (Cool white lamps are deficient in far‐red light, with a R/FR ratio of 7.5 compared with 2.0 for the incandescent lamps.) All the seedlings from 67° and 80% of those from 64° stopped extension growth and set terminal buds within 28 days of the change of regime. The seedlings from 61° and further south continued growing, as did control seedlings from 67° grown as above but with incandescent light at 20 µmol m−2 s−1 replacing cool white illumination. To distinguish between a clinal and ecotypic pattern of variation, the interval between 64° and 59° was investigated by growing populations originating from that area in the same regimes as before. After 28 days in the cool white day‐extension regime, the percentage budset was 86 for the population from 64°, 0 for the population from 59° and 25–50 for the intermediate populations; i.e. the populations showed a clinal variation in requirement for far‐red light according to latitude. Thus northern populations of Picea abies appear to behave as 'light‐dominant' plants for the photoperiodic control of extension growth and budset, whereas the more southern populations behave as 'dark‐dominant' plants.  相似文献   

17.
Phytoplankton ecology in an Antarctic lake   总被引:4,自引:0,他引:4  
SUMMARY. The ecology of the phytoplankton of Heywood Lake, Signy Island, South Orkney Islands, Antarctica was investigated during 1969–72. The lake, which is ice-covered for 8–10 months per year, is moderately eutrophic due to enrichment by seal excreta.
The annual cycle of the phytoplankton is described. During the winter (approximately May-September), very few algal cells could be detected in the water column and 14C fixation was below measurable limits. In spring (October-November), a rapidly-growing population of algae caused a large increase in the chlorophyll- a concentration (maximum value 170 mg m−2) but carbon fixation remained low, with values <500 mg C m−2 day−1. The algae contributing to this peak were mainly small chlorophytes and chrysophytes. The summer open-water period (December-March) was characterized by a different phytoplankton population dominated by cryptophytes. Chlorophyll levels were lower ( c . 40 mg m−2) but 14C fixation rates >3 g C m−2 day−1 were measured on bright days. Values for Assimilation Number were very high (maximum value 10.5 mg C h−1 mg−1 (chlorophyll- a ) in January (1971) though temperatures never exceeded 8°C. In autumn, the phytoplankton regressed to winter levels. Both spring and summer algal populations probably overwinter as resting stages.  相似文献   

18.
SUMMARY 1. We measured biomass and light/dark bottle productivity of macrophytes in a Wisconsin stream throughout one growing season. Except for a brief period in early spring when a Cladophora glomerata -filamentous algal community was dominant, Potamogeton pectinatus was the dominant macrophyte species in Badfish Creek.
2. Maximum community biomass was 710 g DW m−2, with a maximum above ground biomass of 620 g DW m−2 and a maximum below ground biomass of 120 g DW m−2. Annual productivity was estimated at 1435 g DW m−2 year−1, with a calculated P/B of 2.01.
3. In situ net production averaged 2.83g C g AFDW−1 h−1 Net positive carbon gain by the P. pectinatus community occurred when water temperatures were above 15°C, and daylength at least 12h. This is correlated to the onset of tuber germination in spring, and the point of maximal biomass decline in autumn.  相似文献   

19.
The photosynthetic response was studied in two clones ( Populus deltoides × maximowiczii Eridano and Populus × euramericana I‐214), known for their differential response to ozone (O3) in terms of visible symptoms, when exposed to O3 (60 nl l−1 5 h day−1, 7 and 15 days). The photosynthetic ability was tested using gas exchange and chlorophyll fluorescence analysis. O3 caused a decrease in the CO2 assimilation rate at light saturation level in mature leaves of both clones. Alterations of Chl fluorescence parameters, in particular the Fv/Fm ratio and non‐photochemical quenching were also observed. The effects were similar for both clones and it could not be concluded that differential effects on electron transport capacity were responsible for the observed reduction in photosynthesis. The reduction of photosynthetic rate in Eridano was due mainly to a reduced mesophyll activity, as evidenced by the increase in intercellular CO2 concentration and the minimal changes in stomatal conductance. In contrast, in I‐214, stomatal effects were primarily responsible, although effects on the mesophyll cannot be excluded. Data obtained indicate that the effects observed at the mesophyll level may be attributed to indirect effects caused by membrane disorders.  相似文献   

20.
The variegated leaves of the Crassulacean acid metabolism (CAM) species Agave americana have a large central longitudinal green band with narrow yellow bands on either side. The yellow bands had 97% less pigment content, 84% lower ribulose‐1,5‐bisphosphate carboxylase/oxygenase activity, but only 20% lower phosphoenolpyruvate carboxylase activity than the green band. The green bands exhibited gas exchange typical of CAM plants, with most CO2 uptake occurring at night, leading to a daily net CO2 uptake of 127 mmol m−2 day−1. The yellow bands had some nighttime net CO2 uptake but a larger loss during the daytime, indicating that they were sink tissues. Nocturnal citrate and malate accumulations for the yellow bands were 65 and 75%, respectively, of those of the green bands; sucrose supported 64‐83% of their nocturnal acid accumulation. This is the first evidence that agaves, which are malic‐enzyme‐type CAM plants, use sucrose as the carbon source for nocturnal acid accumulation. About 44% of the carbon demand of the yellow bands can be supplied by sucrose diffusing via the symplast from the adjacent green band, about 25% from fructose and glucose diffusion, and some via the apoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号