首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The mycofloral succession on the needles ofPinus sylvestris was investigated in Tübingen, southwest Germany. Dead needles attached to the branches (D-type), those caught on branches (C-type) and three types of fallen needles, i.e., freshly fallen (L-type), slightly discolored (OL-type) and almost black needles (F-type) were examined for their fungal flora. Common primary saprophytes were rich on the dead needles on the tree, and on the L-type needles. They were replaced by successive species that contained the well-known species preferring pine needles as their substratum, such asVerticicladium trifidum orSympodiella acicola. Their ecological niches in pine leaf litter and their distribution patterns from a biogeographical viewpoint were discussed.  相似文献   

2.
The fungal species involved in the decomposition of needle litter and their response to intraspecific genetic variation of trees are poorly known. First, we compared the needle decomposition and fungal decomposers underneath eight different Norway spruce clones in situ. This experiment revealed 60-70% loss of needle mass in two years. Although spruce clones differed considerably in growth (twofold height difference) and their needles differed in chemical composition, no significant difference was found for loss of needle mass under the spruce clones. Furthermore, the spruce clones did not affect the community structure of the fungal decomposers. Fungi inhabiting needle litter were identified by extracting ribosomal RNA (rRNA) and sequencing complementary DNA (cDNA) of internal trascribed spacer 1 (ITS1) region. The most frequent identifications were Lophodermium, Pezizales, Mycena, and Marasmius, suggesting that endophytic fungi were involved in the decomposition process. Second, we evaluated the potential of endophytes to decompose needle material in a microcosm experiment in which all other fungi than endophytes were excluded. Within 2 years, the endophytes had decomposed 35-45% of the needle mass. Sequences of Mollisia, Lophodermium, Lachnum, and Phialocephala were most frequently found in rRNA and rDNA extracted from the needles at the end of the microcosm experiment. The dominant needle endophyte in fresh, green needles was Lophodermium piceae, and this species was also found frequently in the needle material after 2 years of decay both in the field and laboratory experiments. Moreover, the relative abundance of Lophodermium-derived denaturing gradient gel electrophoresis (DGGE) bands correlated positively with the decomposition in the microcosm experiment. Hence, our results suggest a significant role of endophytic fungi, and particularly L. piceae, in the process of needle decomposition in boreal forests.  相似文献   

3.
Seiji Tokumasu 《Mycoscience》1996,37(3):313-321
Mycofloral succession on decaying pine needles in aPinus densiflora forest on a moder site was investigated in Sugadaira, Nagano Pref., central Japan. Dead needles on the tree, fallen needles obtained from two recognizable sublayers of the L layer and the upper sub-layer of the F1 layer in the organic horizon were examined for their fungal flora using both washing and surface sterilization techniques. The major interior colonizer in freshly fallen needles varied with the season:Chaetopsina fulva in summer andSelenosporella curvispora in the other seasons.Thysanophora penicillioides was a remarkable external colonizer of freshly fallen needles in summer, while soil fungi were external colonizers of such needles in the other seasons. A possible successional change of major fungi with the needle decay was suggested. The observed seasonal alternation of the species colonizing freshly fallen needles was discussed in relation to climatic conditions. Contributions from Sugadaira Montane Research Center, No. 152.  相似文献   

4.
The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees.  相似文献   

5.
The diversity of endophytic fungi within single symptomless Norway spruce needles is described and their possible role as pioneer decomposers after needle detachment is investigated. The majority (90%) of all 182 isolates from green intact needles were identified as Lophodermium piceae. Up to 34 isolates were obtained from single needles. Generally, all isolates within single needles had distinct randomly amplified microsatellite (RAMS) patterns. Single trees may thus contain a higher number of L. piceae individuals than the number of their needles. To investigate the ability of needle endophytes to act as pioneer decomposers, surface-sterilized needles were incubated on sterile sand inoculated with autoclaved or live spruce forest humus layer. The dry weight loss of 13-17% found in needles after a 20-week incubation did not significantly differ between the sterilized and live treatments. Hence, fungi surviving the surface sterilization of needles can act as pioneer decomposers. A considerable portion of the needles remained green during the incubation. Brown and black needles, in which the weight loss had presumably taken place, were invaded throughout by single haplotypes different from L. piceae. Instead, Tiarasporella parca, a less common needle endophyte, occurred among these invaders of brown needles. Needle endophytes of Norway spruce seem thus to have different abilities to decompose host tissues after needle cast. L. piceae is obviously not an important pioneer decomposer of Norway spruce needles. The diversity of fungal individuals drops sharply when needles start to decompose. Thus, in single needles the decomposing mycota is considerably less diverse than the endophytic mycota.  相似文献   

6.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

7.
This study investigated fungal endophytes in the needles of Norway spruce (Picea abies) cuttings in relation to host tree growth. We also determined the prevalence of endophytes in needles incubated for six months. The cuttings originated from clonal origins showing slow- and fast-growth in long-term field trials but the heritable differences in growth rate were not yet detected among the studied cutting. Endophytes were isolated from surface-sterilized needles with culture-free DNA techniques. No significant differences were observed between endophyte communities of slow- and fast-growing clonal origins. However, the endophyte community correlated with the current growth rate of cuttings suggesting that endophytes reflect short- rather than long-term performance of a host. The concentration of condensed tannins was similar in slow- and fast-growing clonal origins but it showed a negative relationship with endophyte species richness, implying that these secondary compounds may play an important role in spruce tolerance against fungal infections. More than a third of endophyte species were detected in both fresh and decomposing needles, indicating that many needle endophytes are facultative saprotrophs. Several potentially pathogenic fungal species were also found within the community of saprotrophic endophytes.  相似文献   

8.
We investigated microfungal assemblages on leaf litter within a subalpine forest in central Japan and their variation with season, litter depth, and litter species. Microfungal assemblages were compared for Abies needles and Betula leaf litter collected from litter and fermentation layers of the forest floor during the growing season in spring, summer, and autumn. A total of 35 and 42 species were isolated from Abies needles and Betula leaf litter, respectively. The observed variation in microfungal assemblages was primarily attributable to seasonal differences. The frequencies of Trichoderma viride, Volutella ciliata, Mucor sp., and Umbelopsis ramanniana increased in summer, leading to a high degree of similarity of microfungal assemblages in different litter depths and litter species. Microfungal assemblages on Abies needles in spring and autumn and those on Betula leaves in spring were characterized by Trichoderma viride, V. ciliata, Thysanophora penicillioides, Trichoderma polysporum, and (or) Mortierella alpina. Microfungal assemblages on Betula leaves in autumn were characterized by the absence of these species and the occurrence of Cladosporium cladosporioides. The results were discussed with an emphasis on the role of microfungi in decomposition processes and the impact on fungi of predicted future increases in global temperature.  相似文献   

9.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

10.
Seiji Tokumasu 《Mycoscience》1998,39(4):409-416
Experimental studies were carried out to investigate seasonal effects on the fungal succession in the interior or decaying pine needles. At different seasons, the needles fallen for a short period were collected and marked, then placed on the surface of the O horizon in a pine forest. The needles were removed at intervals and their interior fungal communities were examined by using a surface sterilization technique. The successions of interior colonizers observed on the fallen needles at four different times are roughly divided into three groups based on the composition of species colonizing from litter. Seasonal shifts in the species combination were discussed with climatic and biotic factors. As a result, temperature at the surface of litter appeared to be a cardinal factor contributing to these seasonal changes in the succession of interior colonizers. Contributions to Sugadaira Montane Research Center, No. 164.  相似文献   

11.
Saprotrophic and ectomycorrhizal (EcM) forest fungi decompose organic matter and mobilize nutrients for host plants, respectively. Competition between the two guilds may cause the so-called Gadgil effect, i.e., decreased litter decomposition rates resulting in increased carbon storage in soil. The Gadgil effect was supposed to even affect global climate, highlighting the necessity to understand fungal distribution and interactions in soil. Searching for evidence of competition between saprotrophic and mycorrhizal fungi, we analyzed the distribution of fungi along a well-stratified vertical spruce forest soil profile in two seasons, i.e., autumn and the following spring. The different soil strata (i.e., two mineral horizons and two organic layers) underneath the litter layer were colonized by distinct fungal communities, which included roughly consistent proportions of all fungal guilds and phyla at each time. However, the community composition changed quantitatively between the sampling dates. Along the vertical soil profile, it differed mostly between the organic layers and the mineral soil, which is supposed to be due to differences in the predominant energy sources (i.e., aboveground litter and rhizodeposition, respectively). Network analyses revealed co-occurrences (i.e., positive correlations of individual abundances) to outweigh mutual exclusions (i.e., negative correlations) between individual fungi in each soil stratum and season. This also applied for interactions between saprotrophic and EcM fungi. Network analyses therefore provided no indications for a possible Gadgil effect. However, considering individual nutrient use efficiencies might refine insights from network analyses in future studies and facilitate linking community dynamics to ecosystem processes.  相似文献   

12.
利用连续收获法研究了川西亚高山老龄林(VF)、桦木林(BF)、次生针阔混交林(MF)、人工云杉林(AF)及高山栎灌丛(AO) 5种主要森林类型的凋落物组成及其动态,目的在于探索不同恢复途径对森林凋落物组成和产量的影响。结果表明,5种森林类型的全年凋落产量大小依次为VF(4.32 t/hm~2)、MF(4.10 t/hm~2)、BF(3.52 t/hm~2)、AO(3.01 t/hm~2)、AF(2.34 t/hm~2)。AF全年凋落量显著小于其他3种乔木森林类型(VF,BF,MF)(P 0. 05)。各森林类型的叶片年凋落量占总量比例均超过70%。VF、AF、AO均在生长前期(前一年10月至当年5月)达到最大凋落量2.41,1.29,1.63 t/hm~2; BF、MF凋落产量在生长季后期(当年7月至10月)到达最大值,分别为1.34,1.80 t/hm~2。常绿针叶树为主的VF、AF叶片凋落物样地间变异显著高于落叶阔叶树为主的BF、MF,表明其对立地条件的响应更为敏感。林分密度与胸高断面积组合因子更能反映凋落物特征。  相似文献   

13.
Interactions between needles of Pinus resinosa and ectomycorrhizal fungi   总被引:1,自引:1,他引:0  
Relatively little is known about the factors controlling ectomycorrhizal fungal communities. One possible factor is forest litter chemistry. In a series of experiments we demonstrated that the growth of ectomycorrhizal fungi able to colonize red pine ( Pinus resinosa Ait.) are differentially affected by red pine needles and needle chemical components. For example, water extracts of pine needles stimulated the growth of Suillus intermedius (Smith & Thiers) Smith & Thiers and inhibited the growth of Amanita rubescens Pers. Catechin and epicatechin gallate, components of the water extract, acted similarly to the extract. The volatile compounds α- and β-pinene also had differential effects on the growth of the various species of ectomycorrhizal fungi. Our results suggest that forest litter chemistry has the potential differentially to affect the growth of ectomycorrhizal fungal species and so could affect the structure of ectomycorrhizal fungal communities.  相似文献   

14.
Leaf litter samples of 12 dicotyledonous tree species (belonging to eight families) growing in a dry tropical forest and in early stages of decomposition were studied for the presence of litter fungi. Equal-sized segments of the leaves incubated in moist chambers were observed every day for 30 d for the presence of fungi. Invariably, the fungal assemblage on the litter of each tree species was dominated by a given fungal species. The diversity of fungi present in the litter varied with the tree species although many species of fungi occurred in the litter of all 12 species. A Pestalotiopsis species dominated the litter fungal assemblage of five trees and was common in the litter of all tree species. The present study and earlier studies from our lab indicate that fungi have evolved traits such as thermotolerant spores, ability to utilize toxic furaldehydes, ability to produce cell wall destructuring enzymes and an endophyte-litter fungus life style to survive and establish themselves in fire-prone forests such as the one studied here. This study shows that in the dry tropical forest, the leaf litter fungal assemblage is governed more by the environment than by the plant species.  相似文献   

15.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

16.
Mites and fungi in heavily infested stores in the Czech Republic   总被引:3,自引:0,他引:3  
Toxigenic and allergen-producing fungi represent a serious hazard to human food and animal feed safety. Ninety-four fungal species were isolated from mite-infested samples of seeds taken from Czech seed stores. Fungi were isolated from the surface of four kinds of seeds (wheat, poppy, lettuce, and mustard) and from the gut and external surface of five species of mites (i.e., Acarus siro L., 1758, Caloglyphus rhizoglyphoides (Zachvatkin, 1973), Lepidoglyphus destructor (Schrank, 1781), Tyrophagus putrescentnae (Schrank, 1781) and Cheyletus malaccensis Oudemans 1903) separately. Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed. Fungal frequencies differed between mites gut and exoskeleton surface and between the surfaces of mites and seeds. Three groups of fungal species were recognized: 1) mite surface-associated fungi: Penicillium brevicompactum, Alternaria alternata, and Aspergillus versicolor; 2) mite surface- and seed-associated fungi: Aspergillus niger, Penicillium crustosum, Penicillium aurantiogriseum, Penicillium chrysogenum, and Aspergillus flavus; and 3) seed-associated fungi: Cladosporium herbarum, Mucor dimorphosporus f. dimorphosporus, Botrytis cinerea, Penicillium griseofulvum, and Eurotium repens. Mite-carried species of microfungi are known to produce serious mycotoxins (e.g., aflatoxin B1, cyclopiazonic acid, sterigmatocystin, ochratoxin A, and nephrotoxic glycopeptides) as well as allergen producers (e.g., A. alternata and P. brevicompactum). Storage mites may play an important role in the spread of some medically hazardous micromycetes. In addition, these mite-fungi associations may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.  相似文献   

17.

Aims

The fungal communities in living and decomposed leaves of European Beech (Fagus sylvatica) were compared to identify the phyllosphere fungi involved in litter decomposition at a site in Bavaria, Germany.

Methods

New primers were designed to cover a broad range of fungal ribosomal DNA sequence diversity. Following ‘environmental PCR’, clone libraries from each of five samples of living leaves (surface-sterilized and untreated), freshly fallen, initially and highly decomposed leaves, were screened using RFLP fingerprinting.

Results

Statistical analysis (ANOSIM) revealed that the fungal communities colonizing living (a) and initially decomposed leaves (c) significantly differed between each other and from freshly fallen (b) and highly decomposed leaves (d). Fungal assemblages of a and d were statistically indistinguishable from each other and from the endophyllous fungal community in living leaves.

Conclusions

The results showed that endophyllous fungi play a role throughout the whole decomposition process of beech leaf litter. Therefore, clarification of the life cycle of certain endophytic and/or soil fungi may only be achieved by considering both phyllosphere and soil habitats.  相似文献   

18.
The Eurasian spruce bark beetle Ips typographus and their fungal associates can cause severe damage to Norway spruce forests. In this paper, by using both molecular and cultural methods, we compared fungal assemblages on bark beetles from different locations, characterized by different beetle population levels. Ips typographus was trapped in the western Alps in two outbreak and in two control areas. Sequencing of clone libraries of Internal Transcribed Spacer (ITS) identified 31 fungal Operational Taxonomic Units (OTUs), while fungal isolations yielded 55 OTUs. Only three OTUs were detected by both molecular and cultural methods indicating that both methods are necessary to adequately describe fungal richness. Fungal assemblages on insects from these four and from an additional 12 study sites differed among stands in response to varying ecological conditions and to the limited spreading ability of I. typographus. Ophiostomatoid fungi showed higher diversity in outbreak areas; the pathogenic Ophiostoma polonicum was relatively uncommon, while O. bicolor was the most abundant species. This result was not unexpected, as insects were trapped not at the peak but at the end of the outbreaks and supports the hypothesis of a temporal succession among Ophiostoma species. Ubiquitous endophytes of trees or common airborne fungi were present both in outbreak and in control areas. Wood decaying basidiomycetes were almost never detected on beetles. Yeasts were detected only by molecular analysis, and the OTUs detected matched those reported elsewhere in Europe and in the world, suggesting a very long association between some yeasts and bark beetles.  相似文献   

19.
Fifteen tree species from a tropical dry thorn forest and fifteen tree species from a tropical dry deciduous forest in the Mudumalai Wildlife Sanctuary, Nilgiri Biosphere Reserve, southern India, were surveyed for their foliar endophyte communities during the dry and wet seasons. Surface sterilized leaf segments of uniform dimension were plated on nutrient agar and culturable endophytes growing from the segments were identified. Endophyte diversity was greater in the dry thorn forest than in the dry deciduous forest in the dry season. Although the isolation frequency of culturable endophytes increased for both forests during the wet season, the assemblages were represented not by any unique fungal species but by the commonly occurring ones. Furthermore, although individual leaves were densely colonized by endophytes, only a few species of endophytes colonized the whole leaves; and, only a few fungal species dominated the foliar endophytic communities and were common for both forests during both dry and wet seasons. Thus, even under wet conditions that favour dispersal and infection by fungi, the endophyte diversity increased only marginally, an indication that certain tropical forests are not hyperdiverse with reference to fungal endophytes. This should be considered when using culturable endophyte diversity as a surrogate for estimating global fungal diversity.  相似文献   

20.
Two fungi associated with bark beetles, Graphium pseudormiticum (described in 1994) and Rhexographium fimbriisporum (described in 1995), have two micromorphological characters in common. Both species produce conidia with conspicuous basal frills, and the conidia align in chains, despite being produced in slime. The association of G. pseudormiticum with the pine bark beetle, Orthotomicus erosus, and the association of R. fimbriisporum with the spruce bark beetle, Ips typographus, suggest ecological differences between the two fungal species. Analyses of micromorphology and phylogenetic analyses of aligned 18S and ITS sequences suggest that these two species are congeneric and should be classified in Graphium but that they represent distinct species. A collection of strains tentatively identified as Graphium spp., isolated from Ips typographus on Picea abies, Ips cembrae on Larix decidua and Tomicus minor on Pinus sylvestris in Austria share the same unusual basal conidial frills and conidial chains. Isolates from spruce were identified as G. fimbriisporum and those from pine as G. pseudormiticum. The strains from Ips cembrae on Larix decidua, distinguished by the reddish color of their colonies, microscopic structures and molecular characteristics, are described as the new species Graphium laricis sp. nov., and the close relationship of this species with the other two species is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号