首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the second messenger ceramide in Fas-mediated death requires clarification. To address this issue, we generated hepatocytes from paired acid sphingomyelinase (ASMase; asmase)(+/+) and asmase(-/-) mice. asmase(-/-) hepatocytes, derived from 8-week-old mice, manifested normal sphingomyelin content and normal morphological, biochemical, and biologic features. Nonetheless, ASMase-deficient hepatocytes did not display rapid ceramide elevation or apoptosis in response to Jo2 anti-Fas antibody. asmase(-/-) hepatocytes were not inherently resistant to apoptosis because staurosporine, which did not induce early ceramide elevation, stimulated a normal apoptotic response. The addition of low nanomolar quantities of natural C16-ceramide, which by itself did not induce apoptosis, completely restored the apoptotic response to anti-Fas in asmase(-/-) hepatocytes. Other sphingolipids did not replace natural ceramide and restore Fas sensitivity. Overcoming resistance to Fas in asmase(-/-) hepatocytes by natural ceramide is evidence that it is the lack of ceramide and not ASMase which determines the apoptotic phenotype. The ability of natural ceramide to rescue the phenotype without reversing the genotype provides evidence that ceramide is obligate for Fas induction of apoptosis in hepatocytes.  相似文献   

2.
3.
Recent evidence suggests clustering of plasma membrane rafts into ceramide-enriched platforms serves as a transmembrane signaling mechanism for a subset of cell surface receptors and environmental stresses (Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001) J. Biol. Chem. 276, 20589-20596; Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001) J. Biol. Chem. 276, 23954-23961). Translocation of the secretory form of acid sphingomyelinase (ASMase) into microscopic rafts generates therein the ceramide that drives raft coalescence. This process serves to feed forward Fas activation, with approximately 2% of full caspase 8 activation sufficient for maximal ASMase translocation, leading to death-inducing signaling complex formation within ceramide-rich platforms, and apoptosis. Here we report that treatment of Jurkat T cells with UV-C also induces ASMase translocation into rafts within 1 min, catalyzing sphingomyelin hydrolysis to ceramide and raft clustering. In contrast to Fas, UV-induced ASMase translocation and activation were caspase-independent. Nonetheless, ceramide-rich platforms promoted UV-C-induced death signaling, because ASMase inhibition or raft disruption inhibited apoptosis, improving clonogenic cell survival. These studies thus define two distinct mechanisms for biologically relevant ASMase activation within rafts; a Fas-mediated mechanism dependent upon caspase 8 and FADD, and a UV-induced mechanism independent of caspase activation. Consistent with this notion, genetic depletion or pharmacologic inhibition of caspase 8 or FADD, which render Jurkat cells incapable of sphingolipid signaling and apoptosis upon Fas ligation, did not impair these events upon UV-C stimulation.  相似文献   

4.
The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.  相似文献   

5.
Stress-induced activation of sphingomyelinase (SMase) leading to generation of ceramide, a lipid mediator, has been associated with apoptosis in several malignant and nonmalignant cell lines. Photodynamic therapy (PDT), with the phthalocyanine photosensitizer Pc 4 [HOSiPcOSi(CH3)2(CH2)3N(CH3)2], is an oxidative stress associated with increased ceramide generation and subsequent induction of apoptosis in various cell types. We assessed the role of SMase in photocytotoxicity. Normal human lymphoblasts accumulated ceramide and underwent apoptosis after Pc 4-PDT. In contrast, Niemann-Pick disease (NPD) lymphoblasts, which are deficient in acid sphingomyelinase (ASMase) activity, failed to respond to Pc 4-PDT with ceramide accumulation and apoptosis, suggesting that ASMase may be a Pc 4-PDT target. NPD lymphoblasts were exposed to exogenous bacterial sphingomyelinase (bSMase) to test whether these defects are reversible. Treatment of NPD cells with bSMase itself led to elevated ceramide formation, which did not translate into induction of apoptosis. However, a combination of Pc 4-PDT + bSMase induced a significant apoptotic response. Thus, the combined treatment of Pc 4-PDT + bSMase, rather than bSMase alone, was required to restore apoptosis in NPD cells. These data support the hypothesis that SMase is a proapoptotic factor determining responsiveness of cells to Pc 4-PDT.  相似文献   

6.
The phagolysosomal compartment is crucial for the defense against infection with intracellular pathogens. Within this compartment, the TNF- and IFN-gamma-responsive acid sphingomyelinase (ASMase) generates the signaling molecule ceramide, resulting in the activation of proteases like cathepsin D. To investigate the possible role of ASMase as a mediator of the antibacterial effects of TNF and IFN-gamma, ASMase(-/-) mice were infected with Listeria monocytogenes. ASMase(-/-) mice showed a dramatically increased susceptibility to L. monocytogenes (LD(50) approximately 100 CFU) when compared with syngeneic wild-type mice (LD(50) approximately 10,000 CFU). In L. monocytogenes-challenged ASMase(-/-) mice, IFN-gamma serum levels as well as IL-1 beta and IL-6 secretion by macrophages were similar to those observed in wild-type C57BL/6 mice. Although macrophages and granulocytes from ASMase(-/-) mice showed intact production of reactive nitrogen intermediates and oxidative burst, ASMase(-/-) macrophages proved completely incapable of restricting the growth of L. monocytogenes in vitro. The results of this study suggest that ASMase is crucially required for the intracellular control of L. monocytogenes in macrophages and granulocytes by nonoxidative mechanisms.  相似文献   

7.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

8.
Although important for cellular stress signaling pathways, the molecular mechanisms of acid sphingomyelinase (ASMase) activation remain poorly understood. Previous studies showed that treatment of MCF-7 mammary carcinoma cells with the potent protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate (PMA), induces a transient drop in sphingomyelin concomitant with an increase in cellular ceramide levels (Becker, K. P., Kitatani, K., Idkowiak-Baldys, J., Bielawski, J., and Hannun, Y. A. (2005) J. Biol. Chem. 280, 2606-2612). Here we show that PMA selectively activates ASMase and that ASMase accounts for the majority of PMA-induced ceramide. Pharmacologic inhibition and RNA interference experiments indicated that the novel PKC, PKCdelta, is required for ASMase activation. Immunoprecipitation experiments revealed the formation of a novel PKCdelta-ASMase complex after PMA stimulation, and PKCdelta was able to phosphorylate ASMase in vitro and in cells. Using site-directed mutagenesis, we identify serine 508 as the key residue phosphorylated in response to PMA. Phosphorylation of Ser(508) proved to be an indispensable step for ASMase activation and membrane translocation in response to PMA. The relevance of the proposed mechanism of ASMase regulation is further validated in a model of UV radiation. UV radiation also induced phosphorylation of ASMase at serine 508. Moreover, when transiently overexpressed, ASMase(S508A) blocked the ceramide formation after PMA treatment, suggesting a dominant negative function for this mutant. Taken together, these results establish a novel direct biochemical mechanism for ASMase activation in which PKCdelta serves as a key upstream kinase.  相似文献   

9.
Melanoma differentiation associated gene‐7/interleukin‐24 (mda‐7/IL‐24) uniquely displays broad cancer‐specific apoptosis‐inducing activity through induction of endoplasmic reticulum (ER) stress. We hypothesize that ceramide, a promoter of apoptosis, might contribute to mda‐7/IL‐24 induction of apoptosis. Ad.mda‐7‐infected tumor cells, but not normal cells, showed increased ceramide accumulation. Infection with Ad.mda‐7 induced a marked increase in various ceramides (C16, C24, C24:1) selectively in prostate cancer cells. Inhibiting the enzyme serine palmitoyltransferase (SPT) using the potent SPT inhibitor myriocin (ISP1), impaired mda‐7/IL‐24‐induced apoptosis and ceramide production, suggesting that ceramide formation caused by Ad.mda‐7 occurs through de novo synthesis of ceramide and that ceramide is required for mda‐7/IL‐24‐induced cell death. Fumonisin B1 (FB1) elevated ceramide formation as well as apoptosis induced by Ad.mda‐7, suggesting that ceramide formation may also occur through the salvage pathway. Additionally, Ad.mda‐7 infection enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin in cancer cells. ASMase silencing by RNA interference inhibited the decreased cell viability and ceramide formation after Ad.mda‐7 infection. Ad.mda‐7 activated protein phosphatase 2A (PP2A) and promoted dephosphorylation of the anti‐apoptotic molecule BCL‐2, a downstream ceramide‐mediated pathway of mda‐7/IL‐24 action. Pretreatment of cells with FB1 or ISP‐1 abolished the induction of ER stress markers (BiP/GRP78, GADD153 and pospho‐eIF2α) triggered by Ad.mda‐7 infection indicating that ceramide mediates ER stress induction by Ad.mda‐7. Additionally, recombinant MDA‐7/IL‐24 protein induced cancer‐specific production of ceramide. These studies define ceramide as a key mediator of an ER stress pathway that may underlie mda‐7/IL‐24 induction of cancer‐specific killing. J. Cell. Physiol. 222: 546–555, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Tumor necrosis factor (TNF)-alpha signals cell death and simultaneously induces the generation of ceramide, which is metabolized to sphingosine and sphingosine 1-phosphate (S1P) by ceramidase (CDase) and sphingosine kinase. Because the dynamic balance between the intracellular levels of ceramide and S1P (the "ceramide/S1P rheostat") may determine cell survival, we investigated these sphingolipid signaling pathways in TNF-alpha-induced apoptosis of primary hepatocytes. Endogenous C16-ceramide was elevated during TNF-alpha-induced apoptosis in both rat and mouse primary hepatocytes. The putative acid sphingomyelinase (ASMase) inhibitor imipramine inhibited TNF-alpha-induced apoptosis and C16-ceramide increase as did the knock out of ASMase. Overexpression of neutral CDase (NCDase) inhibited the TNF-alpha-induced increase of C16-ceramide and apoptosis in rat primary hepatocytes. Moreover, NCDase inhibited liver injury and hepatocyte apoptosis in mice treated with D-galactosamine plus TNF-alpha. This protective effect was abrogated by the sphingosine kinase inhibitor N,N-demethylsphingosine, suggesting that the survival effect of NCDase is due to not only C16-ceramide reduction but also S1P formation. Administration of S1P or overexpression of NCDase activated the pro-survival kinase AKT, and overexpression of dominant negative AKT blocked the survival effect of NCDase. In conclusion, activation of ASMase and generation of C16-ceramide contributed to TNF-alpha-induced hepatocyte apoptosis. NCDase prevented apoptosis both by reducing C16-ceramide and by activation of AKT through S1P formation. Therefore, the cross-talk between sphingolipids and AKT pathway may determine hepatocyte apoptosis by TNF-alpha.  相似文献   

11.
Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation of ceramide in response to ethanol feeding may underlie several effects of ethanol. ASMase inhibitors may be considered as a therapeutic target for alcohol-induced hepatic steatosis and activation of stress kinases.  相似文献   

12.

Background

While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either “normalize” dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study.

Methodology/Principal Findings

Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase), regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C16-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase+/+ mice or asmase−/− littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase−/− mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect.

Conclusions/Significance

These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide elevation, defining a ceramide rheostat that determines outcome of single dose radiotherapy. Understanding the temporal sequencing of anti-angiogenic drugs and radiation enables optimized radiosensitization and design of innovative radiosurgery clinical trials.  相似文献   

13.
14.
A previous study using mice null for Gpx4 indicates that PHGPx plays a critical role in antioxidant defense and is essential for the survival of the mouse. In the present study, we further analyzed the stress response of MEFs (murine embryonic fibroblasts) derived from mice heterozygous for the Gpx4 gene (Gpx4(+/-) mice). MEFs from Gpx4(+/-) mice have a 50% reduction in PHGPx expression without any changes in the activities of other major antioxidant defense enzymes. Compared to MEFs from Gpx4(+/+) mice, MEFs from Gpx4(+/-) mice were more sensitive to exposure to the oxidizing agent t-butyl hydroperoxide (t-BuOOH), and t-BuOOH exposure induced increased apoptosis in MEFs from Gpx4(+/-) mice. When cultured at low cell density, MEFs from Gpx4(+/-) mice also showed retarded growth under normal culture conditions (20% oxygen) that was reversed by culturing under low oxygen (2% oxygen). In addition, oxidative damage was increased in the MEFs from the Gpx4(+/-) mice, as indicated by increased levels of F(2)-isoprostanes and 8-oxo-2-deoxyguanosine in these cells. Our data demonstrate that MEFs from Gpx4(+/-) mice are more sensitive to oxidative stress because of reduced expression of PHGPx.  相似文献   

15.
Members of the caspase family are essential for many apoptotic programs. We studied mouse embryonic fibroblasts (MEFs) deficient in caspases 3 and 7 and in caspase 9 to determine the role of these proteases in endoplasmic reticulum (ER) stress-induced apoptosis. Both caspase 3(-/-)/caspase 7(-/-) and caspase 9(-/-) MEFs were resistant to cytotoxicity induced via ER stress and failed to exhibit apoptotic morphology. Specifically, apoptosis induced by increased intracellular calcium was shown to depend only on caspases 3 and 9, whereas apoptosis induced by disruption of ER function depended additionally on caspase 7. Caspase 3(-/-)/caspase 7(-/-) and caspase 9(-/-) MEFs also exhibited decreased loss of mitochondrial membrane potential, which correlated with altered caspase 9 processing, increased induction of procaspase 11, and decreased processing of caspase 12 in caspase 3(-/-)/caspase 7(-/-) cells. Furthermore, disruption of ER function was sufficient to induce accumulation of cleaved caspase 3 and 7 in a heavy membrane compartment, suggesting a potential mechanism for caspase 12 processing and its role as an amplifier in the death pathway. Caspase 8(-/-) MEFs were not resistant to ER stress-induced cytotoxicity, and processing of caspase 8 was not observed upon induction of ER stress. This study thus demonstrates a requirement for caspases 3 and 9 and a key role for the intrinsic pathway in ER stress-induced apoptosis.  相似文献   

16.
17.
Integrins govern cellular adhesion and transmit signals leading to activation of intracellular signaling pathways aimed to prevent apoptosis. Herein we report that attachment of oligodendrocytes (OLs) to fibronectin via alpha(v)beta(3) integrin receptors rendered the cells more resistant to apoptosis than the cells attached to laminin via alpha(6)beta(1) integrins. Investigation of molecular mechanisms involved in alpha(v)beta(3) integrin-mediated cell survival revealed that ligation of the integrin with fibronectin results in higher expression of activated Lyn kinase. Both in OLs and in the mouse brain, Lyn selectively associates with alpha(v)beta(3) integrin, not with alpha(v)beta(5) integrin, leading to suppression of acid sphingomyelinase activity and preventing ceramide-mediated apoptosis. In OLs, knockdown of Lyn with small interfering RNA resulted in OL apoptosis with concomitant accumulation of C(16)-ceramide due to activation of acid sphingomyelinase (ASMase) and sphingomyelin hydrolysis. Knocking down ASMase partially protected OLs from apoptosis. In the brain, ischemia/reperfusion (IR) triggered rearrangements in the alpha(v)beta(3) integrin-Lyn kinase complex leading to disruption of Lyn kinase-mediated suppression of ASMase activity. Thus, co-immunoprecipitation studies revealed an increased association of alpha(v)beta(3) integrin-Lyn kinase complex with ionotropic glutamate receptor subunits, GluR2 and GluR4, after cerebral IR. Sphingolipid analysis of the brain demonstrated significant accumulation of ceramide and sphingomyelin hydrolysis. The data suggest a novel mechanism for regulation of ASMase activity during cell adhesion in which Lyn acts as a key upstream kinase that may play a critical role in cerebral IR injury.  相似文献   

18.
Das S  Raj L  Zhao B  Kimura Y  Bernstein A  Aaronson SA  Lee SW 《Cell》2007,130(4):624-637
A critical unresolved issue about the genotoxic stress response is how the resulting activation of the p53 tumor suppressor can lead either to cell-cycle arrest and DNA repair or to apoptosis. We show here that hematopoietic zinc finger (Hzf), a zinc-finger-containing p53 target gene, modulates p53 transactivation functions in an autoregulatory feedback loop. Hzf is induced by p53 and binds to its DNA-binding domain, resulting in preferential transactivation of proarrest p53 target genes over its proapoptotic target genes. Thus, p53 activation results in cell-cycle arrest in Hzf wild-type MEFs, while in Hzf(-/-) MEFs, apoptosis is induced. Exposure of Hzf null mice to ionizing radiation resulted in enhanced apoptosis in several organs, as compared to in wild-type mice. These findings provide novel insights into the regulation of p53 transactivation function and suggest that Hzf functions as a key player in regulating cell fate decisions in response to genotoxic stress.  相似文献   

19.
20.
Endothelial cells represent an important component of the neurogenic niche and may regulate self-renewal and differentiation of neural progenitor cells (NPCs). Whether they have a role in determining the apoptotic fate of NPCs after stress or injury is unclear. NPCs are known to undergo p53-dependent apoptosis after ionizing radiation, whereas endothelial cell apoptosis after irradiation is dependent on membrane acid sphingomyelinase (ASMase) and is abrogated in sphingomyelin phosphodiesterase 1 (smpd1)- (gene that encodes ASMase) deficient mice. Here we found that p53-dependent apoptosis of NPCs in vivo after irradiation was inhibited in smpd1-deficient mice. NPCs cultured from mice, wild type (+/+) or knockout (/), of the smpd1 gene, however, demonstrated no difference in apoptosis radiosensitivity. NPCs transplanted into the hippocampus of smpd1−/− mice were protected against apoptosis after irradiation compared with those transplanted into smpd1+/+ mice. Intravenous administration of basic fibroblast growth factor, which does not cross the blood–brain barrier, known to protect endothelial cells against apoptosis after irradiation also attenuated the apoptotic response of NPCs. These findings provide evidence that endothelial cells may regulate p53-dependent apoptosis of NPCs after genotoxic stress and add support to an important role of endothelial cells in regulating apoptosis of NPCs after injury or in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号