首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calpain is a ubiquitous protease with potential involvement in apoptosis. We report that in human melanoma cells, cisplatin-induced calpain activation occurs early in apoptosis. Calpain activation and subsequent apoptosis were inhibited by calpeptin and PD150606, two calpain inhibitors with different modes of action. Furthermore, cisplatin induced cleavage of the BH3-only protein Bid, yielding a 14-kDa fragment similar to proapoptotic, caspase-cleaved Bid. However, Bid cleavage was inhibited by inhibitors of calpain, but not by inhibitors of caspases or of cathepsin L. Recombinant Bid was cleaved in vitro by both recombinant calpain and by lysates of cisplatin-treated cells. Cleavage was calpeptin sensitive, and the cleavage site was mapped between Gly70 and Arg71. Calpain-cleaved Bid induced cytochrome c release from isolated mitochondria. While calpeptin did not affect cisplatin-induced modulation of Bak to its proapoptotic conformation, a dominant-negative mutant of MEKK1 (dnMEKK) inhibited Bak modulation. dnMEKK did not, however, block Bid cleavage. The combination of dnMEKK and calpeptin had an additive inhibitory effect on apoptosis. In summary, calpain-mediated Bid cleavage is important in drug-induced apoptosis, and cisplatin induces at least two separate apoptotic signaling pathways resulting in Bid cleavage and Bak modulation, respectively.  相似文献   

2.
MEK kinase 1 (MEKK1) is a 196-kDa protein that, in response to genotoxic agents, was found to undergo phosphorylation-dependent activation. The expression of kinase-inactive MEKK1 inhibited genotoxin-induced apoptosis. Following activation by genotoxins, MEKK1 was cleaved in a caspase-dependent manner into an active 91-kDa kinase fragment. Expression of MEKK1 stimulated DEVD-directed caspase activity and induced apoptosis. MEKK1 is itself a substrate for CPP32 (caspase-3). A mutant MEKK1 that is resistant to caspase cleavage was impaired in its ability to induce apoptosis. These findings demonstrate that MEKK1 contributes to the apoptotic response to genotoxins. The regulation of MEKK1 by genotoxins involves its activation, which may be part of survival pathways, followed by its cleavage, which generates a proapoptotic kinase fragment able to activate caspases. MEKK1 and caspases are predicted to be part of an amplification loop to increase caspase activity during apoptosis.  相似文献   

3.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

4.
We have here examined ionizing radiation (IR)-induced apoptotic signaling in one IR-sensitive small cell lung carcinoma (SCLC) and one resistant non-small cell lung carcinoma (NSCLC) cell line, both harboring mutant p53. In the sensitive SCLC cell line, IR induced conformational modulation of Bak and Bax, mitochondrial depolarization, and nuclear fragmentation. These events were not observed in the IR-resistant NSCLC cell line. However, in the same cells, cisplatin, a DNA-damaging drug, induced Bak and Bax modulation, mitochondrial depolarization, and nuclear fragmentation. Pre-mitochondrial signaling events were examined in order to further characterize the differing IR response. In the SCLC cell line, IR-induced apoptotic signaling was found to involve a MEKK1-related pathway and activation of the stress-activated kinases JNK and p38. In comparison, the NSCLC cell line had higher basal levels of activity of JNK and p38, and IR treatment did not further activate these kinases. However, NSCLC cells were sensitive to Bak modulation and apoptosis induced by a kinase-active mutant of MEKK1. Together, the results delineate a mechanism of IR resistance in NSCLC cells and indicate that IR and cisplatin induce Bak modulation and apoptosis via different pathways.  相似文献   

5.
Stress-activated protein (SAP) kinases and the mitochondrial pro-apoptotic Bcl-2 protein Bak are important regulators of apoptosis. Reduced expression of Bak increases cellular resistance to the anticancer agent cisplatin, and we report here that mouse embryo fibroblasts deficient in the SAP kinase jnk1 are highly resistant to apoptosis induced by cisplatin. When human melanoma cells were treated with cisplatin, Bak function was found to be regulated in two distinct steps by two SAP kinases, MEKK1 and JNK1. The first of these steps involves MEKK1-controlled conformational activation of Bak. The second step leads to formation of 80-170 kDa Bak complexes correlating with apoptosis, and is controlled by JNK1. Inhibition of MEKK1 blocked the initial Bak conformational activation but did not block JNK1 activation, and deficiency in, or inhibition of, JNK1 did not prevent conformational activation of Bak. Furthermore, inducible expression of a constitutively active form of MEKK1 led to Bak conformational activation, but not to 80-170 kDa complexes. Consequently, apoptosis was delayed unless JNK was exogenously stimulated, indicating that Bak conformational activation is not necessarily an apoptotic marker. The two-step regulation of Bak revealed here may be important for tight control of mitochondrial factor release and apoptosis.  相似文献   

6.
The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted.  相似文献   

7.
During apoptotic stimulation, the serine threonine kinase, MEKK1, is cleaved into an activated 91 kDa kinase fragment. This cleavage is mediated by caspase 3 and leads to further caspase 3 activation and apoptosis. Forced expression of the 91 kDa kinase fragment induces apoptosis through changes in membrane potential of the mitochondria mediated by permeability transition pore opening. MEKK1 activation, however, fails to release cytochrome c from the mitochondria. Herein, we determined that overexpression of MEKK1 causes mitochondrial Smac/Diablo release correlating with MEKK1-induced apoptosis. Furthermore, using siRNA that lowers Smac/Diablo expression, MEKK1-induced apoptosis was significantly reduced. Mouse embryonic fibroblast cells lacking MEKK1 expression are also resistant to etoposide-induced mitochondrial Smac/Diablo release. In contrast, etoposide-induced mitochondrial cytochrome c release was not inhibited. MEKK1 also activates the MAP kinase JNK, but MEKK1-induced mitochondrial Smac/Diablo release and apoptosis are independent of MEKK1 mediated JNK activation. Taken together, release of Smac/Diablo from the mitochondria plays a role in MEKK1-induced apoptosis.  相似文献   

8.
9.
10.
Cell shape change and the restructuring of the cytoskeleton are important regulatory responses that influence the growth, differentiation, and commitment to apoptosis of different cell types. MEK kinase 1 (MEKK1) activates the c-Jun NH2-terminal kinase (JNK) pathway in response to exposure of cells to microtubule toxins, including taxol. MEKK1 expression is elevated 3-fold in mitosis and microtubule toxin-treated cells accumulated at G2/M of the cell cycle. Targeted disruption of MEKK1 expression in embryonic stem cells resulted in the loss of JNK activation and increased apoptosis in response to taxol. Targeted disruption of the MEK kinase 2 gene had no effect on activation of the JNK pathway in response to microtubule toxins demonstrating a specific role of MEKK1 in this response. Cytochalasin D-mediated disruption of actin fibers activates JNK and stimulates apoptosis similarly in MEKK1(-/-) and wild type cells. The results show that MEKK1 is required for JNK activation in response to microtubule but not actin fiber toxins in embryonic stem cells. MEKK1 activation can protect cells from apoptosis in response to change in the integrity of the microtubule cytoskeleton.  相似文献   

11.
The BRCA1 tumor suppressor gene has previously been implicated in induction of high levels of apoptosis in osteocarcinoma cell lines. Overexpression of BRCA1 was shown to induce an apoptotic signaling pathway involving the c-Jun N-terminal kinase (JNK), but the signaling steps upstream and downstream of JNK were not delineated. To better understand the role of BRCA1 in apoptosis, we examined the effect of wild-type and C-terminal-truncated dominant negative BRCA1 on breast and ovarian cancer cell lines subjected to a number of different pro-apoptotic stimuli, including growth factor withdrawal, substratum detachment, ionizing radiation, and treatment with anticancer agents. All of these treatments were found to induce substantial levels of apoptosis in the presence of wild-type BRCA1, whereas dominant negative BRCA1 truncation mutants diminished the apoptotic response. Subsequent mapping of the apoptotic pathway induced by growth factor withdrawal demonstrated that BRCA1 enhanced signaling through a pathway that sequentially involved H-Ras, MEKK4, JNK, Fas ligand/Fas interactions, and caspase-9 activation. In addition, the pathway functioned independently of the p53 tumor suppressor. These data suggest that BRCA1 is an important modulator of the response to cellular stress and that loss of this apoptotic potential due to BRCA1 mutations may contribute to tumor development.  相似文献   

12.
The conditional protein kinase DeltaMEKK3:ER* allows activation of the mitogen-activated and stress-activated protein kinases (MAPKs and SAPKs) without imposing a primary cellular stress or damage. Such separation of stress from stress-induced signalling is particularly important in the analysis of apoptosis. Activation of DeltaMEKK3:ER* in cycling CCl39 cells caused a rapid stimulation of the ERK1/2, JNK and p38 pathways but resulted in a slow, delayed apoptotic response. Paradoxically, activation of the same pathways inhibited the rapid expression of Bim(EL) and apoptosis following withdrawal of serum. Inhibition of the ERK1/2 pathway prevented the down-regulation of Bim(EL) but caused only a partial reversion of the cyto-protective effect of DeltaMEKK3:ER*. In contrast, inhibition of p38 had no effect, raising the possibility that activation of JNK might also exert a protective effect. To test this we used CCl39 cells expressing DeltaMEKK1:ER* which activates JNK but not ERK1/2, p38, PKB or IkappaB kinase. Activation of DeltaMEKK1:ER* inhibited serum withdrawal-induced conformational changes in Bax and apoptosis. These results suggest that in the absence of any overt cellular damage or chemical stress activation of JNK can act independently of the ERK1/2 or PKB pathways to inhibit serum withdrawal-induced cell death.  相似文献   

13.
MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the MEKK1-dependent apoptotic pathway, we created mutations within MEKK1. MEKK1-deficient cells were complemented with MEKK1 containing mutations in either the ubiquitin interacting motif (UIM), plant homeodomain (PHD), caspase cleavage site or the kinase domain at near endogenous levels of expression and tested for their sensitivity to each drug. We found that both the kinase activity and the PHD domain of MEKK1 are required for JNK activation and efficient induction of apoptosis by drugs causing cytoskeletal disruption. Furthermore, we discovered that modification of MEKK1 and its localization depends on the integrity of the PHD.  相似文献   

14.
MEK kinase 1 (MEKK1) is a 196-kDa enzyme that is involved in the regulation of the c-Jun N-terminal kinase (JNK) pathway and apoptosis. In cells exposed to genotoxic agents including etoposide and cytosine arabinoside, MEKK1 is cleaved at Asp874 by caspases. The cleaved kinase domain of MEKK1, itself, stimulates caspase activity leading to apoptosis. Kinase-inactive MEKK1 expressed in HEK293 cells effectively blocks genotoxin-induced apoptosis. Treatment of cells with taxol, a microtubule stabilizing agent, did not induce MEKK1 cleavage in cells, and kinase-inactive MEKK1 expression failed to block taxol-induced apoptosis. MEKK1 became activated in HEK293 cells exposed to taxol, but in contrast to etoposide-treatment, taxol failed to increase JNK activity. Taxol treatment of cells, therefore, dissociates MEKK1 activation from the regulation of the JNK pathway. Overexpression of anti-apoptotic Bcl2 blocked MEKK1 and taxol-induced apoptosis but did not block the caspase-dependent cleavage of MEKK1 in response to etoposide. This indicates Bcl2 inhibition of apoptosis is, therefore, downstream of caspase-dependent MEKK1 cleavage. The results define the involvement of MEKK1 in the induction of apoptosis by genotoxins but not microtubule altering drugs.  相似文献   

15.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

16.
WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor U0126 and expression of a dominant negative MEK5 mutant. Expression of dominant negative mutants of MEKK2 and MEKK3 also blocked activation of ERK5 by WNK1. Moreover, both MEKK2 and MEKK3 coimmunoprecipitated with endogenous WNK1 from cell lysates. WNK1 phosphorylated both MEKK2 and -3 in vitro, and MEKK3 was activated by WNK1 in 293 cells. Finally, ERK5 activation by epidermal growth factor was attenuated by suppression of WNK1 expression using small interfering RNA. Taken together, these results place WNK1 in the ERK5 MAP kinase pathway upstream of MEKK2/3.  相似文献   

17.
Interferon (IFN) alpha induces a caspase-dependent apoptosis that is associated with activation of the proapoptotic Bak and Bax, loss of mitochondrial membrane potential, and release of cytochrome c. In addition to the onset of the classical Jak-STAT pathway, IFNalpha also induced phosphoinositide 3-kinase (PI3K) activity. Pharmacological inhibition of PI3K activity by Ly294002 disrupted IFN-induced apoptosis upstream of mitochondria. Inhibition of mTOR by rapamycin or by overexpression of a kinase dead mutant of mTOR, efficiently blocked IFNalpha-induced apoptosis. A PI3K and mTOR-dependent phosphorylation of p70S6 kinase and 4E-BP1 repressor was induced by IFNalpha treatment of cells and was strongly inhibited by Ly294002 or rapamycin. The activation of Jak-STAT signaling upon IFNalpha stimulation was not affected by abrogating PI3K/mTOR pathway. Neither was the expression of several IFNalpha target genes affected, nor the ability of IFNalpha to protect against virus-induced cell death affected by inhibition of the PI3K/mTOR pathway. These data demonstrate that an intact PI3K/mTOR pathway is necessary for the ability of IFNalpha to induce apoptosis, whereas activation of the Jak-STAT pathway alone appears to be insufficient for this specific IFNalpha-induced effect.  相似文献   

18.
Mitochondrial outer membrane permeabilization (MOMP) and release of mitochondrial intermembrane proteins like cytochrome c are critical steps in the control of apoptosis. Previous work has shown that MOMP depends on the functionally redundant multidomain proapoptotic proteins, Bak and Bax. Here we demonstrate that Bak and Bax are functionally non-redundant during Neisseria gonorrhoeae (Ngo)- and cisplatin-induced apoptosis. While the activation of Bak is caspase independent Bax activation needs Bak and active caspases. Silencing of either Bak or Bax resists both Ngo- and cisplatin- but not TNFalpha-induced apoptosis. Activation of Bak is required to release cytochrome c from the mitochondria; however, Bax is still required to activate effector caspases. Thus, both Bak and Bax are necessary to accomplish DNA damage and Ngo-induced apoptosis.  相似文献   

19.
A prominent feature of glioblastoma is its resistance to death receptor-mediated apoptosis. In this study, we explored the possibility of modulating death receptor-induced cell death with the c-Jun-NH2-terminal kinase (JNK) activator anisomycin. Anisomycin activates JNK by inactivating the ribosome and inducing "ribotoxic stress." We found that anisomycin and death receptor ligand anti-Fas antibody CH-11 or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induce apoptosis in multiple human glioblastoma cell lines. For example, in U87 cells, anisomycin reduced the IC50 of CH-11 by more than 20-fold (from 500 to 25 ng/mL). Cell viability in response to anisomycin, CH-11, and their combination was 79%, 91%, and 28% (P<0.001), respectively. Anisomycin and TRAIL were found to be similarly synergistic in glioblastoma cells maintained as tumor xenografts. The potentiation of death receptor-dependent cell death by anisomycin was specific because emetine, another ribosome inhibitor that does not induce ribotoxic stress or activate JNK, did not have a similar effect. Synergistic cell death was predominantly apoptotic involving both extrinsic and intrinsic pathways. Expression of Fas, FasL, FLIP, and Fas-associated death domain (FADD) was not changed following treatment with anisomycin+CH-11. JNK was activated 10- to 22-fold by anisomycin+CH-11 in U87 cells. Inhibiting JNK activation with pharmacologic inhibitors of JNKK and JNK or with dominant negative mitogen-activated protein kinase (MAPK) kinase kinase 2 (MEKK2) significantly prevented cell death induced by the combination of anisomycin+CH-11. We further found that anisomycin+CH-11 up-regulated the proapoptotic protein Bim by approximately 14-fold. Simultaneously inhibiting Bim expression and JNK activation additively desensitized U87 cells to anisomycin+CH-11. These findings show that anisomycin-induced ribotoxic stress sensitizes glioblastoma cells to death receptor-induced apoptosis via a specific mechanism requiring both JNK activation and Bim induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号