首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horseshoe crabs (order Xiphosura) are often referred to as an ancient order of marine chelicerates and have been considered as keystone taxa for the understanding of chelicerate evolution. However, the mitochondrial genome of this order is only available from a single species, Limulus polyphemus. In the present study, we analyzed the complete mitochondrial genomes from two Asian horseshoe crabs, Carcinoscorpius rotundicauda and Tachypleus tridentatus to offer novel data for the evolutionary relationship within Xiphosura and their position in the chelicerate phylogeny. The mitochondrial genomes of C. rotundicauda (15,033 bp) and T. tridentatus (15,006 bp) encode 13 protein-coding genes, two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Overall sequences and genome structure of two Asian species were highly similar to that of Limulus polyphemus, though clear differences among three were found in the stem-loop structure of the putative control region. In the phylogenetic analysis with complete mitochondrial genomes of 43 chelicerate species, C. rotundicauda and T. tridentatus were recovered as a monophyly, while L. polyphemus solely formed an independent clade. Xiphosuran species were placed at the basal root of the tree, and major other chelicerate taxa were clustered in a single monophyly, clearly confirming that horseshoe crabs composed an ancestral taxon among chelicerates. By contrast, the phylogenetic tree without the information of Asian horseshoe crabs did not support monophyletic clustering of other chelicerates. In conclusion, our analyses may provide more robust and reliable perspective on the study of evolutionary history for chelicerates than earlier analyses with a single Atlantic species.  相似文献   

2.
鲎的分布及生活习性   总被引:6,自引:1,他引:6  
鲎是一种古老的节肢动物,现存的鲎分为二亚科三属四种,本文对鲎在世界上的分布及其生活习性做了概述。  相似文献   

3.
4.
Horseshoe crabs are the only extant xiphosurans and are believed to be morphologically unchanged for more than 200 million years. Of the four extant species namely, Limulus polyphemus, Tachypleus tridentatus, Tapinauchenius gigas and Carcinoscorpius rotundicauda, the latter three are found in Asian waters. Recent evidences showed that Asian horseshoe crabs are facing serious threats such as degradation of their spawning grounds and habitat, environmental pollution, overexploitation as a culinary delicacy and biomedical bleeding practices. Baseline data on the distribution and existing population of the wild horseshoe crabs remain poorly known in several Asian regions. Several studies have clearly revealed that pressure due to over-fishing of wild stock has increased tremendously in the last decade. Due to an increase in demand for Tachypleus Amebocyte Lysate (TAL) analogous to Limulus Amebocyte Lysate (LAL) in the United States, there is an urgent need to comprehensively address their fishing and conservation measures in the Asian region. This review addresses the overall studies on three species of Asian horseshoe crabs in relation to their fishing practices, local exploitation of their wild stock either for human consumption (or) by biomedical industries. The authors have structured the discussion on an international scale to address the existing problems in fishing and conservation of horseshoe crabs. Since no specific regulatory force or legislative protection act or a policy to preserve their natural stock are available to this date, this paper strongly recommends representative countries to include horseshoe crabs under their wildlife protection act to avoid further unsustainable exploitation of their wild populations.  相似文献   

5.
Among the Porifera, symbiosis with Symbiodinium spp. (i.e., zooxanthellae) is largely restricted to members of the family Clionaidae. We surveyed the diversity of zooxanthellae associated with sponges from the Caribbean and greater Indo-Pacific regions using chloroplast large subunit (cp23S) domain V sequences. We provide the first report of Clade C Symbiodinium harbored by a sponge (Cliona caesia), and the first report of Clade A Symbiodinium from an Indo-Pacific sponge (C. jullieni). Clade A zooxanthellae were also identified in sponges from the Caribbean, which has been reported previously. Sponges that we examined from the Florida Keys all harbored Clade G Symbiodinium as did C. orientalis from the Indo-Pacific, which also supports earlier work with sponges. Two distinct Clade G lineages were identified in our phylogenetic analysis; Symbiodinium extracted from clionaid sponges formed a monophyletic group sister to Symbiodinium found in foraminiferans. Truncated and 'normal' length variants of 23S rDNA sequences were detected simultaneously in all three morphotypes of C. varians providing the first evidence of chloroplast-based heteroplasmy in a sponge. None of the other sponge species examined showed evidence of heteroplasmy. As in previous work, length variation in cp23S domain V sequences was found to correspond in a highly precise manner to finer resolution of phylogenetic topology among Symbiodinium clades. On a global scale, existing data indicate that members of the family Clionaidae that host zooxanthellae can form symbiotic associations with at least four Symbiodinium clades. The majority of sponge hosts appear to harbor only one cladal type of symbiont, but some species can harbor more than one clade of zooxanthellae concurrently. The observed differences in the number of partners harbored by sponges raise important questions about the degree of coevolutionary integration and specificity of these symbioses. Although our sample sizes are small, we propose that one of the Clade G lineages identified in this study is comprised of sponge-specialist zooxanthellae. These zooxanthellae are common in Caribbean sponges, but additional work in other geographic regions is necessary to test this idea. Sponges from the Indo-Pacific region harbor zooxanthellae from Clades A, C, and G, but more sponges from this region should be examined.  相似文献   

6.
Xiphosurids are an archaic group of aquatic chelicerate arthropods, generally known by the colloquial misnomer of ‘horseshoe crabs’. Known from marine environments as far back as the early Ordovician, horseshoe crabs are generally considered ‘living fossils’ – descendants of a bradytelic lineage exhibiting little morphological or ecological variation throughout geological time. However, xiphosurids are known from freshwater sediments in the Palaeozoic and Mesozoic; furthermore, the contention that xiphosurids show little morphological variation has never been tested empirically. Attempts to test this are hampered by the lack of a modern phylogenetic framework with which to explore different evolutionary scenarios. Here, I present a phylogenetic analysis of Xiphosurida and explore patterns of morphospace and environmental occupation of the group throughout the Phanerozoic. Xiphosurids are shown to have invaded non‐marine environments independently at least five times throughout their evolutionary history, twice resulting in the radiation of major clades – bellinurines and austrolimulids – that occupied novel regions of morphospace. These clades show a convergent ecological pattern of differentiation, speciation and subsequent extinction. Horseshoe crabs are shown to have a more dynamic and complex evolutionary history than previously supposed, with the extant species representing only a fraction of the group's past ecological and morphological diversity.  相似文献   

7.
中国鲎和圆尾鲎血淋巴细胞分类和特征的比较研究   总被引:1,自引:0,他引:1  
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(6):1169-1176
为了更好地了解中国鲎(Tachpleus tridentatus)和圆尾鲎(Carcinoscorpius rotundicauda)血淋巴细胞的种类组成和特征差异,综合运用光学显微镜、扫描电镜和粒度仪,较为系统地对两种鲎的血淋巴细胞进行了分类和特征研究,从而为两种鲎的血淋巴细胞和分子生物学研究提供基础资料。根据血淋巴细胞大小、核质比、细胞着色特点、细胞中颗粒存在与否、颗粒的密集程度等,中国鲎和圆尾鲎的血淋巴细胞均可分为大颗粒细胞、小颗粒细胞和透明细胞三种主要类型,且两种鲎的血淋巴细胞均以颗粒细胞为主,透明细胞在血淋巴细胞中所占比例最小,但具有高核质比。两种鲎的同类血淋巴细胞在染色和形态上无显著性差异,但在同一种鲎中,血淋巴细胞密度存在显著的雌雄差异。    相似文献   

8.
Horseshoe crabs' exceptional morphological conservatism over the past 150 My has led to their reputation as “living fossils,” but also has served to obscure phylogenetic relationships within the complex. Here we employ nucleotide sequences from two mitochondrial genes to assess molecular evolutionary rates and patterns among all extant horseshoe crab species. The American species Limulus polyphemus proved to be the sister taxon to a clade composed of the Asiatic species Tachypleus gigas, T. tridentatus, and Carcinoscorpius rotundicauda, whose relationships inter se were not resolved definitively. Both absolute and relative rate tests suggest a moderate slowdown in sequence evolution in horseshoe crabs. Nonetheless, dates of the lineage separations remain uncertain primarily because of reservations about molecular-clock calibrations resulting from large rate variances at examined loci across Arthropods and other animal lineages, as inferred in this and prior studies. Thus, ironically, separation dates as estimated by molecular evidence in general may remain most insecure in taxonomic groups for which such information is needed most—those lacking strong biogeographic or fossil benchmarks for internal-clock calibrations. In any event, the current results show that large numbers of molecular characters distinguish even these most morphologically conservative of organisms. Furthermore, comparisons against previously published mitochondrial sequence data in the morphologically dynamic hermit crab–king crab complex demonstrates that striking heterogeneity in levels of morphotypic differentiation can characterize Arthropod lineages at similar magnitudes of molecular divergence.  相似文献   

9.
The phylogenetic relationships among the southern African freshwater crab species were examined using partial sequence data from three mitochondrial genes (12S rRNA, 16S rRNA, and mtDNA COI) 26 morphological characters and 14 allozyme loci. The aims of the present study were firstly to determine whether freshwater crab species that live in the same geographic region share a close phylogenetic relationship. Secondly, to investigate whether hybridizing species are genetically closely related and thirdly, to test for the validity of subgenera based on the genetic data sets. Phylogenetic analysis based on sequence data revealed largely congruent tree topologies and some associations had consistently high bootstrap support, and these data did not support Bott's subgeneric divisions. The morphological data were less informative for phylogenetic reconstruction while the allozyme data generally supported patterns recovered by the sequence data. A combined analysis of all the data recovered two monophyletic clades, one comprised of small-bodied mountain stream species and the other clade consisting of large-bodied riverine species. The combined analyses reflected clear biogeographic patterning for these river crabs. In addition, there was a clear correlation between genetic distance values and the ability of sympatric species to hybridize.  相似文献   

10.
对鰶亚科4属5种鱼类的线粒体基因组16S rRNA和Cyt b基因片段序列进行序列比较和系统发育关系分析。结果显示:5种鰶亚科鱼类的16S rRNA和Cy tb基因片段同源序列长度分别为525 bp和402 bp,序列联合后的序列总长度为927 bp,其中多态位点178个,简约信息位点123个。选取太平洋鲱Clupea pallasii和大西洋鲱C.harengus为外类群,采用邻接法(NJ)、最大简约法(MP)、最大似然法(ML)和贝叶斯法(BI)分别对2个基因片段序列进行了聚类分析,并联合2个基因片段利用邻接法、最大简约法和贝叶斯法进行分析。系统发育分析显示:斑鰶Konosirus punctatus与花鰶Clupanodon thriss亲缘关系最近,分布于美洲大陆的真鰶属Dorosoma鱼类与印度洋、太平洋分布的斑鰶属、花鰶属和海鰶属Nematalosa鱼类亲缘关系较远。  相似文献   

11.
Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium-potassium ATPase a-subunit 'NaK', and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.  相似文献   

12.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

13.
The partial nucleotide sequences of the rpoB and gyrB genes as well as the complete sequence of the 16S-23S rRNA intergenic transcribed spacer (ITS) were determined for all known Acholeplasma species. The same genes of Mesoplasma and Entomoplasma species were also sequenced and used to infer phylogenetic relationships among the species within the orders Entomoplasmatales and Acholeplasmatales. The comparison of the ITS, rpoB, and gyrB phylogenetic trees with the 16S rRNA phylogenetic tree revealed a similar branch topology suggesting that the ITS, rpoB, and gyrB could be useful complementary phylogenetic markers for investigation of evolutionary relationships among Acholeplasma species. Thus, the multilocus phylogenetic analysis of Acholeplasma multilocale sequence data (ATCC 49900 (T) = PN525 (NCTC 11723)) strongly indicated that this organism is most closely related to the genera Mesoplasma and Entomoplasma (family Entomoplasmataceae) and form the branch with Mesoplasma seiffertii, Mesoplasma syrphidae, and Mesoplasma photuris. The closest genetic relatedness of this species to the order Entomoplasmatales was additionally supported by the finding that A. multilocale uses UGA as the tryptophan codon in its gyrB and gyrA sequences. Use of the UGA codon for encoding tryptophan was previously reported as a unique genetic feature of Entomoplasmatales and Mycoplasmatales but not of Acholeplasmatales. These data, as well as previously published data on metabolic features of A. multilocale, leads to the proposal to reclassify A. multilocale as a member of the family Entomoplasmataceae.  相似文献   

14.
Bactericidal activity was found in Limulus serum, with great individual variation in titers toward different bacteria and also among individual horseshoe crabs toward the same bacterial species. These titers varied between monthly determinations of activity. There were crabs with zero activity toward each bacterial species tested. Although environmental factors are likely influences on the bactericidal activity of Limulus serum, the marked variability within similarly treated groups indicates large individual differences in the horseshoe crab population. The highest titers were recorded against those Gram-negative bacilli found normally in the environment. Lower titers were found against those species found normally in warmblooded animals and present in water as contaminants. The serum bactericidal factor is probably released from the circulating amoebocytes during clotting since there was no activity in the “plasma” portion of the blood. Exposure to heat (56°C, 30 min) destroyed the bactericidal activity.  相似文献   

15.
The phylogenetic relationships among the Drosophila melanogaster group species were analyzed using approximately 1700 nucleotide-long sequences of the mitochondrial DNA. Phylogenetic analysis was performed using this region consisting of a part of the cytochrome b (cytb) coding gene, the entire coding sequences of tRNA-Leu, tRNA-Ser and the first subunit of NADH dehydrogenase (NADH1), and a part of the 16S-rRNA gene. The study of these sequences showed that this region of mtDNA is very invariable, as regards with the type of the genes that it contains, as well as the order that they are located on it. The resulting phylogenetic trees reveal a topology that separates the species into three main ancestral lines, leading to the following subgroups: (a) ananassae subgroup, (b) montium subgroup, and (c) melanogaster and Oriental subgroups. The inferred topology complements and generally agrees with previously proposed classifications based on morphological and molecular data.  相似文献   

16.
The complete nucleotide sequence of the mitochondrial (mt) genome was determined for three species of discoglossid frogs (Amphibia:Anura:Discoglossidae), representing three of the four recognized genera: Alytes obstetricans, Bombina orientalis, and Discoglossus galganoi. The organization and size of these newly determined mt genomes are similar to those previously reported for other vertebrates. Phylogenetic analyses (maximum likelihood, Bayesian inference, minimum evolution, and maximum parsimony) of mt protein-coding genes at the amino acid level were performed in combination with already published mt genome sequence data of three species of Neobatrachia, one of Pipoidea, and four of Caudata. Phylogenetic analyses based on the deduced amino acid sequences of all mt protein-coding genes arrived at the same topology. The monophyly of Discoglossidae is strongly supported. Within the Discoglossidae, Alytes is consistently recovered as sister group of Discoglossus, to the exclusion of Bombina. The three species representing Neobatrachia exhibited extremely long branches irrespective of the phylogenetic inference method used, and hence their relative position with respect to Discoglossidae and Xenopus may be artefactual due to a severe long branch attraction effect. To further investigate the phylogenetic intrarelationships of discoglossids, nucleotide sequences of four nuclear protein-coding genes (CXCR4, RAG1, RAG2, and Rhodopsin) with sequences available for the three discoglossid genera and Xenopus were retrieved from GenBank, and together with a concatenated nucleotide sequence data set containing all mt protein-coding genes except ND6 were subjected to separate and combined phylogenetic analyses. In all cases, a sister group relationship between Alytes and Discoglossus was recovered with high statistical support.  相似文献   

17.
Marine butterflyfishes (10 genera, 114 species) are conspicuously beautiful and abundant animals found on coral reefs worldwide, and are well studied due to their ecological importance and commercial value. Several phylogenies based on morphological and molecular data exist, yet a well-supported molecular phylogeny at the species level for a wide range of taxa remains to be resolved. Here we present a molecular phylogeny of the butterflyfishes, including representatives of all genera (except Parachaetodon) and at least one representative of all commonly cited subgenera of Chaetodon (except Roa sensuBlum, 1988). Genetic data were collected for 71 ingroup and 13 outgroup taxa, using two nuclear and three mitochondrial genes that total 3332 nucleotides. Bayesian inference, parsimony, and maximum likelihood methods produced a well-supported phylogeny with strong support for a monophyletic Chaetodontidae. The Chaetodon subgenera Exornator and Chaetodon were found to be polyphyletic, and the genus Amphichaetodon was not the basal sister group to the rest of the family as had been previously proposed. Molecular phylogenetic analysis of data from 5 genes resolved some clades in agreement with previous phylogenetic studies, however the topology of relationships among major butterflyfish groups differed significantly from previous hypotheses. The analysis recovered a clade containing Amphichaetodon, Coradion, Chelmonops, Chelmon, Forcipiger, Hemitaurichthys, Johnrandallia, and Heniochus. Prognathodes was resolved as the sister to all Chaetodon, as in previous hypotheses, although the topology of subgeneric clades differed significantly from hypotheses based on morphology. We use the species-level phylogeny for the butterflyfishes to resolve long-standing questions regarding the use of subgenera in Chaetodon, to reconstruct molecular rates and estimated dates of diversification of major butterflyfish clades, and to examine global biogeographic patterns.  相似文献   

18.
Porcelain crabs, genera Petrolisthes and Pachycheles, are diverse and abundant members of the eastern Pacific near-shore decapod crustacean community. Morphology-based taxonomic analyses of these crabs have determined groupings of affiliated species, but phylogenetic relationships remain unknown. We used sequence data from the mitochondrial 16S rRNA gene of 46 species of eastern Pacific porcelain crabs to perform phylogenetic analyses by distance and parsimony methods. Our results are used to compare the taxonomic significance of morphological and molecular characters, to examine sequence divergence rates of crab 16S rRNA genes, and to analyze the phylogeographic history of these crabs. Our phylogenetic trees indicate that the genus Petrolisthes is divided into two main clades, reflecting morphological features. One clade contains primarily tropical species, and the other contains species from throughout the eastern Pacific, as well as species in the genera Allopetrolisthes and Liopetrolisthes. Phylogenetic trees of Pachycheles suggest an antitropical distribution; north and south temperate species form one clade and tropical species form a second clade. Sequence divergence rates of the 16S rRNA gene from three pairs of geminate species can be used to date divergence times, and we discuss porcelain crab phylogeographic patterns in relation to paleogeographic events.  相似文献   

19.
Sequence data derived from four markers (the nuclear RP1 and Aldolase and the mitochondrial 16S rRNA and cytochrome b genes) were used to determine the phylogenetic relationships among 32 species belonging to the genus Hippocampus. There were marked differences in the rate of evolution among these gene fragments, with Aldolase evolving the slowest and the mtDNA cytochrome b gene the fastest. The RP1 gene recovered the highest number of nodes supported by >70% bootstrap values from parsimony analysis and >95% posterior probabilities from Bayesian inference. The combined analysis based on 2317 nucleotides resulted in the most robust phylogeny. A distinct phylogenetic split was identified between the pygmy seahorse, Hippocampus bargibanti, and a clade including all other species. Three species from the western Pacific Ocean included in our study, namely H. bargibanti, H. breviceps, and H. abdominalis occupy basal positions in the phylogeny. This and the high species richness in the region suggests that the genus evolved somewhere in the West Pacific. There is also fairly strong molecular support for the remaining species being subdivided into three main evolutionary lineages: two West Pacific clades and a clade of species present in both the Indo-Pacific and the Atlantic Ocean. The phylogeny obtained herein suggests at least two independent colonization events of the Atlantic Ocean, once before the closure of the Tethyan seaway, and once afterwards.  相似文献   

20.
Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号