首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the systematic status of the enigmatic saola (Pseudoryx nghetinhensis), a new bovid genus recently discovered in Vietnam, and to investigate phylogenetic relationships within the family Bovidae, four distinct DNA markers were sequenced. Complete mitochondrial cytochrome b (1143 bp) and 12S rRNA (956 bp) genes and non-coding regions from the nuclear genes for aromatase cytochrome P-450 (199 bp) and lactoferrin (338 bp) have been compared for 25 bovid species and three Cervidae and Antilocapridae outgroups. Independent and/or combined analyses of the four nucleotide matrices through maximum parsimony and maximum-likelihood methods indicated that Bovidae consists of two major lineages, i.e. Bovinac which contains the tribes Bovini, Boselaphini and Tragelaphini, and Antilopinae which encompasses all other bovids. Within Bovinae, the tribe Bovini is divided into buffalo Bovini (Bubalus and Syncerus) and cattle Bovini (Bos and Bison) and Tragelaphini are possibly related to Boselaphini. Pseudoryx is shown to be (i) robustly nested within Bovinae; (ii) strongly associated with Bovini; and (iii) tentatively sharing a sister-group relationship with cattle Bovini. Within Antilopinae, three robust clades are in evidence: (i) Hippotragus and Damaliscus are linked to Ovis; (ii) Aepyceros joins Neotragus; and (iii) Cephalophus clusters with Oreotragus.  相似文献   

2.
Previous morphological and molecular analyses failed to resolve the phylogenetic position of the critically endangered saola (Pseudoryx nghetinhensis) with respect to its placement in Bovina (cattle, bison, and yak) or Bubalina (Asian and African buffaloes). In the present study, G- and C-banding, Ag-staining and FISH with 28S and telomeric probes was undertaken for 17 bovid species. An analysis of these data allowed us to identify 49 structural rearrangements that included autosomes, gonosomes and 17 different NOR sites. The combined data set was subjected to a cladistic analysis aimed at: (i) providing new insights on phylogenetic relationships of the saola and other species within the subfamily Bovinae, and (ii) testing the suitability of different classes of chromosomal characters for phylogenetic reconstruction of the family Bovidae. The study revealed that nucleolar organizing regions (NORs) are phylogenetically informative. It was shown that at least one, or sometimes two of these characters punctuate divergences that include nodes that are the most basal in the tree, to those that are the most recent. In this context, the shared presence of three NORs in saola and species of Syncerus and Bubalus strongly suggests the saola's placement within the subtribe Bubalina. This contrasts with Robertsonian rearrangements which are informative only at the generic level. These findings suggest that NORs are an important and frequently overlooked source of additional phylogenetic information within the Bovidae that may also have applicability at higher taxonomic levels, possibly even for Pecora.  相似文献   

3.
There is a huge data base of genetic information for the domestic artiodactyl speciesBos taurus(cow),Ovis aries(sheep), andCapra hircus(goat). However, the phylogenetic relationships of these economically critical taxa and their close relatives, family Bovidae, remain for the most part unresolved. In this report, we aligned new mitochondrial (mt) 12S and 16S ribosomal (r) DNA sequences from 26 bovid taxa with published sequences. Phylogenetic analyses of the more than 64 kilobases of mt rDNA from 57 taxa support a basal division in the Bovidae that separatesBosand its close relatives fromCapra, Ovis,and their kin. As suggested by previous molecular and morphological studies, “antelopes” are a paraphyletic assemblage. Caprinae (sheep, goats, goat antelopes, and musk oxen) groups consistently with hippotragine and alcelaphine antelopes, while Bovini (cattle and buffaloes) clusters with tragelaphine and boselaphine antelopes. The traditional tribal subdivisions of Bovidae are supported in most cases, but there are exceptions within Caprinae and Antilopinae (gazelles and close relatives). The rDNA data consistently place the enigmatic generaPelea, Pantholops,andSaiga,but the origin ofAepyceros,the impala, remains obscure. Combined phylogenetic analyses of the rDNA data with the skeletal characters of Gentry (1992) were used to assess the stability of the molecular results.  相似文献   

4.
Characterization of molecular markers and the development of better assays for precise and rapid detection of domestic species are always in demand. This is particularly due to recent food scares and the crisis of biodiversity resulting from the huge ongoing illegal traffic of endangered species. The aim of this study was to develop a new and easy method for domestic species identification (river buffalo, cattle, sheep and goat) based on the analysis of a specific mitochondrial nucleotide sequence. For this reason, a specific fragment of Egyptian buffalo mitochondrial 16S rRNA gene (422 bp) was amplified by PCR using two universal primers. The sequence of this specific fragment is completely conserved between all tested Egyptian buffaloes and other river buffaloes in different places in the world. Also, the lengths of the homologous fragments were less by one nucleotide (421 bp) in case of goats and two nucleotides (420 bp) in case of both cattle and sheep. The detection of specific variable sites between investigated species within this fragment was sufficient to identify the biological origin of the samples. This was achieved by alignment between the unknown homologous sequence and the reference sequences deposited in GenBank database (accession numbers, FJ748599–FJ748607). Considering multiple alignment results between 16S rRNA homologous sequences obtained from GenBank database with the reference sequence, it was shown that definite nucleotides are specific for each of the four studied species of the family Bovidae. In addition, other nucleotides are detected which can allow discrimination between two groups of animals belonging to two subfamilies of family Bovidae, Group one (closely related species like cattle and buffalo, Subfamily Bovinae) and Group two (closely related species like sheep and goat, Subfamily Caprinae). This 16S DNA barcode character-based approach could be used to complement cytochrome c oxidase I (COI) in DNA barcoding. Also, it is a good tool for identification of unknown sample belonging to one of the four domestic animal species of family Bovidae quickly and easily.  相似文献   

5.
Caprines include all bovids related to sheep and goat. The composition of the group is controversial and inter-generic relationships have been widely debated. Here, we analysed 2469 characters draw from three distinct molecular markers, i.e. two mitochondrial genes (cytochrome b and 12S rRNA) and one nuclear fragment (exon 4 of the κ -casein gene). The taxonomic sampling includes all genera putatively described as caprines, as well as several other bovid genera in order to elucidate the position of caprines within the family Bovidae, and to determine the exact composition of the group. Phylogenetic analyses confirm firstly that Pseudoryx and Saiga do not belong to caprines, and secondly, that all tribes classically defined in the literature are not monophyletic, supporting the inclusion of all caprine species into a unique enlarged tribe Caprini sensu lato . Our results are in contradiction with previous investigations suggesting a sister-group relationship between Ovis (sheep and mouflons) and Budorcas (takins). By using a molecular calibration point at 18.5 Mya for the first appearance of bovids, we estimated divergence times with our molecular data. We also performed biogeographic inferences to better understand the origin and diversification of caprines during the Neogene. Our analyses suggest that caprines shared a common ancestor with Alcelaphini and Hippotragini in the middle-late Miocene (13.37 ± 0.70 Mya). Our results also indicate that the extant generic diversity of caprines resulted from a rapid adaptive radiation during the late Miocene, at 10.96 ± 0.73 Mya. We propose that this adaptive radiation resulted from the acquisition of reduced metacarpals, a key innovation which occurred during the late Miocene as a consequence of insularity isolation in the mountainous mega-archipelago between Mediterranean and Paratethys Seas.  相似文献   

6.
The saola (Pseudoryx nghetinhensis) is a newly discovered large mammal species, belongs to the subfamily Bovinae and is listed as being endangered. Due to the limitation of the material available, no cytogenetic studies have been carried out on this species. In the present study, preliminary cytogenetic analysis was undertaken on cultured female fibroblast cells to characterize the karyotype organization of saola. An examination of 120 Giemsa stained metaphases showed the diploid chromosome number of 2n = 50, including five bi-armed chromosome pairs. The distribution of constitutive heterochromatin in saola was studied. However, the variability in the size of C-bands was not significant on all the homologous chromosomes. The X chromosome pair, corresponding to the largest telocentric chromosomes, was identified by fluorescent in situ hybridization (FISH) using a bacterial artificial chromosome clone (BAC 0577G05, which maps to BTAXq25-->q33). In comparison to the standard karyotype of cattle (ISCNDB 2000), a G-banded ideogram of saola (about 390 band level) was presented. This work, therefore, provided a basic insight into the karyotype organization of this endangered species and will be particularly useful to improve the understanding of differences of genomes between related species.  相似文献   

7.
The ongoing global spread of “exotic” farm animals, such as water buffaloes, which carry their native sets of viruses, may bear unknown risks for the animals, into whose ecological niches the former are introduced and vice versa. Here, we report on the occurrence of malignant catarrhal fever (MCF) on Swiss farms, where “exotic” water buffaloes were kept together with “native” animals, i.e. cattle, sheep, and goats. In the first farm with 56 water buffaloes, eight cases of MCF due to ovine herpesvirus-2 (OvHV-2) were noted, whereas additional ten water buffaloes were subclinically infected with either OvHV-2 or caprine herpesvirus-2 (CpHV-2). On the second farm, 13 water buffaloes were infected with CpHV-2 and two of those succumbed to MCF. In neither farm, any of the two viruses were detected in cattle, but the Macaviruses were present at high prevalence among their original host species, sheep and goats, respectively. On the third farm, sheep were kept well separated from water buffaloes and OvHV-2 was not transmitted to the buffaloes, despite of high prevalence of the virus among the sheep. Macavirus DNA was frequently detected in the nasal secretions of virus-positive animals and in one instance OvHV-2 was transmitted vertically to an unborn water buffalo calf. Thus, water buffaloes seem to be more susceptible than cattle to infection with either Macavirus; however, MCF did not develop as frequently. Therefore, water buffaloes seem to represent an interesting intermediate-type host for Macaviruses. Consequently, water buffaloes in their native, tropic environments may be vulnerable and endangered to viruses that originate from seemingly healthy, imported sheep and goats.  相似文献   

8.
The evolutionary history of the family Bovidae remains controversial despite past comprehensive morphological and genetic investigations. In an effort to resolve some of the systematic uncertainties within the group, a combined molecular phylogeny was constructed based on four independent nuclear DNA markers (2,573 characters) and three mitochondrial DNA genes (1,690 characters) for 34 bovid taxa representing all seven of the currently recognized bovid subfamilies. The nuclear DNA fragments were analyzed separately and in combination after partition homogeneity tests were performed. There was no significant rate heterogeneity among lineages, and retention index values indicated the general absence of homoplasy in the nuclear DNA data. The conservative nuclear DNA data were remarkably effective in resolving associations among bovid subfamilies, which had a rapid radiation dating back to approximately 23 MYA. All analyses supported the monophyly of the Bovinae (cow, nilgai, and kudu clade) as a sister lineage to the remaining bovid subfamilies, and the data convincingly suggest that the subfamilies Alcelaphinae (hartebeest, tsessebe, and wildebeest group) and Hippotraginae (roan, sable, and gemsbok clade) share a close evolutionary relationship and together form a sister clade to the more primitive Caprinae (represented by sheep, goat, and muskox). The problematic Reduncinae (waterbuck, reedbuck) seem to be the earliest-diverging group of the Caprinae/Alcelaphinae/Hippotraginae clade, whereas the Antilopinae (gazelle and dwarf antelope clade) were always polyphyletic. The sequence data suggest that the initial diversification of the Bovidae took place in Eurasia and that lineages such as the Cephalophinae and other enigmatic taxa (impala, suni, and klipspringer) most likely originated, more or less contemporaneously, in Africa.  相似文献   

9.
The distribution and evolutionary pattern of the conserved microsatellite repeat sequences (CA)n, (TGG)6, and (GGAT)4 were studied to determine the divergence time and phylogenetic position of the water buffalo, Bubalus bubalis. The mean allelic frequencies of these repeat loci showed a high level of heterozygosity among the euartiodactyls (buffalo, cattle, sheep, and goat). Genetic distances calculated from the allelic frequencies of these microsatellites were used to position Bubalus bubalis in the phylogenetic tree. The tree topology revealed a closer proximity of the Bubalus bubalis to the Ovis aries (sheep) genome than to other domestic species. The estimated time of divergence of the water buffalo genome relative to cattle, goat, sheep, pig, rabbit, and horse was found to be 21, 0.5, 0.7, 94, 20.3, and 408 million years (Myr), respectively. Although water buffaloes share morphological and biochemical similarities with cattle, our study using the microsatellite sequences places the bubaline species in an entirely new phylogenetic position. Our results also suggest that with respect to these repeat loci, the water buffalo genome shares a common ancestry with sheep and goat after the divergence of subfamily Bovinae (Bos taurus) from the family Bovidae.  相似文献   

10.
The ruminants constitute the largest group of ungulates, with >190 species, and its distribution is widespread throughout all continents except Australia and Antarctica. Six families are traditionally recognized within the suborder Ruminantia: Antilocapridae (pronghorns), Bovidae (cattle, sheep, and antelopes), Cervidae (deer), Giraffidae (giraffes and okapis), Moschidae (musk deer), and Tragulidae (chevrotains). The interrelationships of the families have been an area of controversy among morphology, palaeontology, and molecular studies, and almost all possible evolutionary scenarios have been proposed in the literature. We analyzed a large DNA data set (5,322 nucleotides) for 23 species including both mitochondrial (cytochrome b, 12S ribosomal RNA (rRNA), and 16S rRNA) and nuclear (kappa-casein, cytochrome P-450, lactoferrin, and alpha-lactalbumin) markers. Our results show that the family Tragulidae occupies a basal position with respect to all other ruminant families, confirming the traditional view that separates Tragulina and Pecora. Within the pecorans, Antilocapridae and Giraffidae emerge first, and the families Bovidae, Moschidae, and Cervidae are allied, with the unexpected placement of Moschus close to bovids rather than to cervids. We used these molecular results to assess the homoplastic evolution of morphological characters within the Ruminantia. A Bayesian relaxed molecular clock approach based on the continuous autocorrelation of evolutionary rates along branches was applied to estimate the divergence ages between the major clades of ruminants. The evolutionary radiation of Pecora occurred at the Early/Late Oligocene transition, and Pecoran families diversified and dispersed rapidly during the Early and Middle Miocene. We propose a biogeographic scenario to explain the extraordinary expansion of this group during the Cenozoic era.  相似文献   

11.
To clarify the genetic relationship between Swamp and River buffaloes, the restriction fragment length polymorphisms (RFLPs) of nuclear genomic ribosomal DNA (rDNA) and cytoplasmic mitochondrial DNA (mtDNA) were analysed. Blood or liver samples from 73 Swamp and three River buffaloes were collected in East and South-east Asian countries. DNA samples from cattle, goats and sheep were used for comparisons. The analysis of rDNA allowed water buffaloes, cattle, goats and sheep to be characterized by four distinct repeat-types. However, swamp and river buffaloes showed the same repeat-type. Divergence of water buffalo and cattle is considered to have occurred approximately four to six million years ago. The RFLPs for mtDNA divided water buffaloes into three haplotypes, swamp-1, swamp-2 and river types. Swamp-1 accounted for 91% of all swamp buffaloes while swamp-2 was observed only in water buffaloes from Thailand (9%). All river buffaloes were of the same haplotype. No differences were observed between swamp and river buffaloes at the rDNA level. In contrast, a few distinct differences between them were found at the mtDNA level. Therefore, mtDNA polymorphisms provide an adequate means for classifying water buffaloes into either swamp or river buffaloes.  相似文献   

12.
In order to cytogenetically describe the new bovid species saola (Pseudoryx nghetinhensis), comparative G- and Q-banding of saola and cattle (Bos taurus) chromosomes as well as FISH-mapping of 32 type-I markers (29 Texas markers and three additional markers) on saola chromosomes were performed. Saola was shown to have a diploid number of 2n = 50 chromosomes possessing five biarmed autosomal pairs and an acrocentric X chromosome. Homology of saola and cattle chromosomes was indicated by banding patterns and by marker hybridization suggesting that all five biarmed pairs in saola originate from centric fusions involving ten cattle autosomes. However, small intrachromosomal rearrangements cannot be excluded. In this study the first preliminary homology map of these two species is presented.  相似文献   

13.
In 1993, several horns of an unknown mammal were collected in the south of Vietnam. Due to the unusual characteristics of its horns, the 'linh duong', as named by Vietnamese hunters, was quickly described as belonging to a new monospecific genus of bovid, i.e. Pseudonovibos spiralis Peter & Feiler, 1994. The taxonomic status of Pseudonovibos was a highly controversial subject, and it has been suggested that this enigmatic species may be related to three different groups of Bovidae: Antilopini (gazelles), Bovini (cattle, bisons, buffaloes), and Caprini sensu lato (goats, sheep and allies). To assess the phylogenetic relationships of the linh duong within the family Bovidae, two different DNA markers, the nuclear lactoferrin and the mitochondrial cytochrome b genes, were sequenced from bone samples of four trophies collected during 1925 in Indochina. Results show that the mysterious horns of linh duong belong to domestic cattle (Bos taurus). Thus, the linh duong is not a new mammal and the scientific name Pseudonovibos spiralis should be abandoned.  相似文献   

14.
Portions of the 12S and 16S mitochondrial ribosomal genes for 16 species representing nine tribes in the mammal family Bovidae were compared with six previously published orthologous sequences. Phylogenetic analysis of variable nucleotide positions under different constraints and weighting schemes revealed no robust groupings among tribes. Consensus trees support previous hypotheses of monophyly for four clades, including the traditional subfamily Bovinae. However, the basal diversification of bovid tribes, which was largely unresolved by morphological, immunodiffusion, allozyme, and protein sequence data, remains unresolved with the addition of DNA sequence data. The intractability of this systematic problem is consistent with a rapid radiation of the major bovid groups. Several analyses of our data show that monophyly of the Bovidae, which was weakly supported by previous morphological and molecular work, is questionable.  相似文献   

15.
The subfamilies and tribes of the family Bovidae   总被引:7,自引:0,他引:7  
In this paper 112 skeletal characters in 27 living species of bovids are used in cladistic and phenetic analyses of the relationships among the tribes in the family. Consideration and modification of the cladistic analysis leads to the conclusion that bovids cluster around four foci in ascending evolutionary sequence: Boselaphini and allies; Antilopini and some Neotragini; the Caprinae; and a group of African antelopes containing Aepyceros , Alcelaphini, Reduncini and Hippotragini. This conclusion is quite closely compatible with the phenetic distance analysis of the same data, provided die latter is read as if primitive or early bovids share more similarities than divergently advanced ones and hence associate more closely. Given the primitiveness of Boselaphini and allies, the crucial finding is that Caprinae link with African antelopes and that Antilopini are more remote. Cladistic and phenetic analyses of 32 characters in 12 extinct bovid species produce similar groupings, but also throw doubt on the classification of Aepyceros , Reduncini and Hippotragini alongside Alcelaphini within a clade of African antelopes. As a result of these two sets of studies, of living and of extinct bovids, minimal alterations are proposed to the arrangement of bovid tribes. In addition, Saiga is placed in the Antilopini, and, with less assurance, Pelea in the Neotragini, Aepyceros in the Alcelaphinae, and Pantholops in the Caprinae. The contribution of the fossil record to understanding bovid evolution is considered.  相似文献   

16.
The present study was carried out to determine the prevalence of gastrointestinal helminthiasis in ruminants in an irrigated area of lower Punjab (Pakistan). For this purpose, 100 faecal samples were collected from sheep, goats, cattle and buffaloes. Parasitological procedures including direct and indirect methods (sedimentation and floatation) and coproculture were used for the identification of helminths. The overall prevalence of helminthiasis was 51% in cattle, 47% in buffaloes, 62% in sheep and 52% in goats, with nematodes being the most common helminths. The prevalence of helminths was higher in young animals compared with adults in cattle (P < 0.0001), buffaloes (P < 0.0001), sheep (P < 0.059) and goats (P = 0.010). The prevalence of different species of helminths also varied in different age groups, with Toxocara vitulorum being higher in calves than adults both in cattle (P = 0.017) and buffaloes (P < 0.0001). Sex-wise prevalence of helminths was higher in males than females for buffaloes (P < 0.0001) and sheep (P = 0.014) in contrast to cattle and goats.  相似文献   

17.
Comparative FISH mapping of river buffalo (Bubalus bubalis, BBU), sheep (Ovis aries, OAR), and cattle (Bos taurus, BTA) X chromosomes revealed homologies and divergences between the X chromosomes in the subfamilies Bovinae and Caprinae. Twenty-four and 17 loci were assigned for the first time to BBU X and OAR X, respectively, noticeably extending the physical map in these two species. Seventeen loci (four of which for the first time) were also FISH mapped to BTA X and used for comparative mapping studies on the three species, which show three morphologically different X chromosomes: an acrocentric (BBU X), an acrocentric with distinct short arms (OAR X), and a submetacentric (BTA X). The same order of loci were found on BTA X and BBU X, suggesting that a centromere transposition, with loss (cattle) or acquisition (river buffalo) of constitutive heterochromatin, differentiated the X chromosomes of these two bovids. Comparison of bovine (cattle and river buffalo) and caprine (sheep) X chromosomes revealed at least five common chromosome segments, suggesting that multiple transpositions, with retention or loss of constitutive heterochromatin, had occurred during their karyotypic evolution.  相似文献   

18.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

19.
The aims of this study were to investigate the prevalence of Moniezia spp. in domestic ruminants in central Vietnam and to develop a polymerase chain reaction (PCR) technique to distinguish M. expansa from M. benedeni. Among 2040 examined domestic animals (540 cattle, 800 goats, 700 sheep) Moniezia was recovered from 5.4% of cattle, 16.4% of sheep and 20.6% of goats. A set of primers for PCR was designed to classify M. expansa and M. benedeni based on the amplification of DNA corresponding to the internal transcribed spacer of 5.8S rRNA. The 457 specimens (75 from cattle, 162 from goats, 150 from sheep, 30 from horses, 30 from chickens and 10 from dogs) were subjected to PCR for classification of Moniezia spp. PCR products with the expected sizes were amplified from bovine, ovine and caprine specimens. No specific PCR products were found for specimens from horses, chickens and dogs. Of the 75 specimens from cattle, nine were classified as M. expansa and 66 were M. benedeni. Among 162 caprine specimens, 138 were M. expansa and 24 were M. benedeni. The distribution of M. expansa and M. benedeni in 150 ovine specimens was 132 and 18, respectively. These results show that M. expansa is dominant in goats and sheep, whereas M. benedeni is more common in cattle; PCR can be used for classification of these two species.  相似文献   

20.
During placentation, mammals employ different strategies for nourishing and supporting fetuses. Members of the Bovidae family, consisting of cloven-hoofed ruminants, utilize multiple maternal attachment points on the placenta, known as cotyledons, and hybrid cells, named trinucleate cells or syncytial plaques, made up of a fusion of fetal trophoblasts and maternal endometrial cells to provide essential hormones and maintain long gestation periods. These hybrid cells are unique to the Bovidae, as fetomaternal borders are clearly separated by syncytiotrophoblasts or epithelial cells in the placenta of other mammals. Recently, it was reported that Syncytin-Rum1 was inserted into ruminant genomes, including cattle and sheep, and was possibly involved in fetomaternal cell-to-cell fusion in both species. However, Syncytin-Rum1 alone is insufficient to explain the morphological diversity of the fetomaternal hybrids between Bovinae and Caprinae (i.e., trinucleate cells in Bovinae and syncytial plaques in Caprinae). Here we report that the bovine endogenous retrovirus K1 (BERV-K1) envelope, which we term Fematrin-1, was specifically expressed in binucleated trophoblasts throughout gestation in cattle and induced fusion with bovine endometrial cells in vitro at a significantly higher level than Syncytin-Rum1 under physiological conditions. Fematrin-1 was found to be integrated into intron 18 of FAT tumor suppressor homolog 2 (FAT2) about 18.3 to 25.4 million years ago and has been subject to purifying selection through the evolution of Bovinae. Phylogenetically, Fematrin-1 is distinct from Syncytin genes found in other mammalian species that form syncytiotrophoblasts. Our results suggest that the newly acquired endogenous retroelement has contributed to generating placentation diversity through ruminant evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号