首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca+ sparks originating from ryanodine receptors (RyRs) are known to cause membrane hyperpolarization and vasorelaxation in systemic arterial myocytes. By contrast, we have found that Ca2+ sparks of pulmonary arterial smooth muscle cells (PASMCs) are associated with membrane depolarization and activated by endothelin-1 (ET-1), a potent vasoconstrictor that mediates/modulates acute and chronic hypoxic pulmonary vasoconstriction. In this study, we characterized the effects of ET-1 on the physical properties of Ca2+ sparks and probed the signal transduction mechanism for spark activation in rat intralobar PASMCs. Application of ET-1 at 0.1-10 nM caused concentration-dependent increases in frequency, duration, and amplitude of Ca2+ sparks. The ET-1-induced increase in spark frequency was inhibited by BQ-123, an ETA-receptor antagonist; by U-73122, a PLC inhibitor; and by xestospongin C and 2-aminoethyl diphenylborate, antagonists of inositol trisphosphate (IP3) receptors (IP3Rs). However, it was unrelated to sarcoplasmic reticulum Ca2+ content, activation of L-type Ca2+ channels, PKC, or cADP ribose. Photorelease of caged-IP3 indicated that Ca2+ release from IP3R could cross-activate RyRs to generate Ca2+ sparks. Immunocytochemistry showed that the distributions of IP3Rs and RyRs were similar in PASMCs. Moreover, inhibition of Ca2+ sparks with ryanodine caused a significant rightward shift in the ET-1 concentration-tension relationship in pulmonary arteries. These results suggest that ET-1 activation of Ca2+ sparks is mediated via the ETA receptor-PLC-IP3 pathway and local Ca2+ cross-signaling between IP3Rs and RyRs; in addition, this novel signaling mechanism contributes significantly to the ET-1-induced vasoconstriction in pulmonary arteries.  相似文献   

2.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels.  相似文献   

3.
Ca(2+) sparks are highly localized Ca(2+) transients caused by Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors (RyR). In smooth muscle, Ca(2+) sparks activate nearby large-conductance, Ca(2+)-sensitive K(+) (BK) channels to generate spontaneous transient outward currents (STOC). The properties of individual sites that give rise to Ca(2+) sparks have not been examined systematically. We have characterized individual sites in amphibian gastric smooth muscle cells with simultaneous high-speed imaging of Ca(2+) sparks using wide-field digital microscopy and patch-clamp recording of STOC in whole cell mode. We used a signal mass approach to measure the total Ca(2+) released at a site and to estimate the Ca(2+) current flowing through RyR [I(Ca(spark))]. The variance between spark sites was significantly greater than the intrasite variance for the following parameters: Ca(2+) signal mass, I(Ca(spark)), STOC amplitude, and 5-ms isochronic STOC amplitude. Sites that failed to generate STOC did so consistently, while those at the remaining sites generated STOC without failure, allowing the sites to be divided into STOC-generating and STOC-less sites. We also determined the average number of spark sites, which was 42/cell at a minimum and more likely on the order of at least 400/cell. We conclude that 1) spark sites differ in the number of RyR, BK channels, and coupling ratio of RyR-BK channels, and 2) there are numerous Ca(2+) spark-generating sites in smooth muscle cells. The implications of these findings for the organization of the spark microdomain are explored.  相似文献   

4.
Mice with a disrupted beta(1) (BK beta(1))-subunit of the large-conductance Ca(2+)-activated K(+) (BK) channel gene develop systemic hypertension and cardiac hypertrophy, which is likely caused by uncoupling of Ca(2+) sparks to BK channels in arterial smooth muscle cells. However, little is known about the physiological levels of global intracellular Ca(2+) concentration ([Ca(2+)](i)) and its regulation by Ca(2+) sparks and BK channel subunits. We utilized a BK beta(1) knockout C57BL/6 mouse model and studied the effects of inhibitors of ryanodine receptor and BK channels on the global [Ca(2+)](i) and diameter of small cerebral arteries pressurized to 60 mmHg. Ryanodine (10 microM) or iberiotoxin (100 nM) increased [Ca(2+)](i) by approximately 75 nM and constricted +/+ BK beta(1) wild-type arteries (pressurized to 60 mmHg) with myogenic tone by approximately 10 microm. In contrast, ryanodine (10 microM) or iberiotoxin (100 nM) had no significant effect on [Ca(2+)](i) and diameter of -/- BK beta(1)-pressurized (60 mmHg) arteries. These results are consistent with the idea that Ca(2+) sparks in arterial smooth muscle cells limit myogenic tone through activation of BK channels. The activation of BK channels by Ca(2+) sparks reduces the voltage-dependent Ca(2+) influx and [Ca(2+)](i) through tonic hyperpolarization. Deletion of BK beta(1) disrupts this negative feedback mechanism, leading to increased arterial tone through an increase in global [Ca(2+)](i).  相似文献   

5.
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca(2+) indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca(2+) released into the cytosol, and its rate of rise is proportional to the Ca(2+) current flowing through the RyRs during a spark (I(Ca(spark))). Thus, Ca(2+) currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of I(Ca(spark)) in different sparks varies more than fivefold, Ca(2+) sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca(2+) current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca(2+)] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca(2+) concentration resulting from the measured range of I(Ca(spark)). At the onset of a spark, the Ca(2+) concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca(2+)](EC50) for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca(2+)] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca(2+) action on a variety of molecular targets within cellular microdomains.  相似文献   

6.
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.  相似文献   

7.
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP?Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP?Rs in Ca(2+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(2+) sparks and Ca(2+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(2+) and constricted the arteries. The blockade of IP?Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(2+) sparks. Importantly, the IP?Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(2+) waves: Ca(2+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(2+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(2+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(2+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP?Rs in Ca(2+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.  相似文献   

8.
The effects of external pH (7.0-8.0) on intracellular Ca(2+) signals (Ca(2+) sparks and Ca(2+) waves) were examined in smooth muscle cells from intact pressurized arteries from rats. Elevating the external pH from 7.4 to 7.5 increased the frequency of local, Ca(2+) transients, or "Ca(2+) sparks," and, at pH 7.6, significantly increased the frequency of Ca(2+) waves. Alkaline pH-induced Ca(2+) waves were inhibited by blocking Ca(2+) release from ryanodine receptors but were not prevented by inhibitors of voltage-dependent Ca(2+) channels, phospholipase C, or inositol 1,4,5-trisphosphate receptors. Activating ryanodine receptors with caffeine (5 mM) at pH 7.4 also induced repetitive Ca(2+) waves. Alkalization from pH 7.4 to pH 7.8-8.0 induced a rapid and large vasoconstriction. Approximately 82% of the alkaline pH-induced vasoconstriction was reversed by inhibitors of voltage-dependent Ca(2+) channels. The remaining constriction was reversed by inhibition of ryanodine receptors. These findings indicate that alkaline pH-induced Ca(2+) waves originate from ryanodine receptors and make a minor, direct contribution to alkaline pH-induced vasoconstriction.  相似文献   

9.
10.
11.
L-type, voltage-dependent calcium (Ca(2+)) channels, ryanodine-sensitive Ca(2+) release (RyR) channels, and large-conductance Ca(2+)-activated potassium (K(Ca)) channels comprise a functional unit that regulates smooth muscle contractility. Here, we investigated whether genetic ablation of caveolin-1 (cav-1), a caveolae protein, alters Ca(2+) spark to K(Ca) channel coupling and Ca(2+) spark regulation by voltage-dependent Ca(2+) channels in murine cerebral artery smooth muscle cells. Caveolae were abundant in the sarcolemma of control (cav-1(+/+)) cells but were not observed in cav-1-deficient (cav-1(-/-)) cells. Ca(2+) spark and transient K(Ca) current frequency were approximately twofold higher in cav-1(-/-) than in cav-1(+/+) cells. Although voltage-dependent Ca(2+) current density was similar in cav-1(+/+) and cav-1(-/-) cells, diltiazem and Cd(2+), voltage-dependent Ca(2+) channel blockers, reduced transient K(Ca) current frequency to approximately 55% of control in cav-1(+/+) cells but did not alter transient K(Ca) current frequency in cav-1(-/-) cells. Furthermore, although K(Ca) channel density was elevated in cav-1(-/-) cells, transient K(Ca) current amplitude was similar to that in cav-1(+/+) cells. Higher Ca(2+) spark frequency in cav-1(-/-) cells was not due to elevated intracellular Ca(2+) concentration, sarcoplasmic reticulum Ca(2+) load, or nitric oxide synthase activity. Similarly, Ca(2+) spark amplitude and spread, the percentage of Ca(2+) sparks that activated a transient K(Ca) current, the amplitude relationship between sparks and transient K(Ca) currents, and K(Ca) channel conductance and apparent Ca(2+) sensitivity were similar in cav-1(+/+) and cav-1(-/-) cells. In summary, cav-1 ablation elevates Ca(2+) spark and transient K(Ca) current frequency, attenuates the coupling relationship between voltage-dependent Ca(2+) channels and RyR channels that generate Ca(2+) sparks, and elevates K(Ca) channel density but does not alter transient K(Ca) current activation by Ca(2+) sparks. These findings indicate that cav-1 is required for physiological Ca(2+) spark and transient K(Ca) current regulation in cerebral artery smooth muscle cells.  相似文献   

12.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

13.
Short-lived, localized Ca(2+) events mediate Ca(2+) signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca(2+)-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca(2+) signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca(2+) signaling system composed of Ca(2+) sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca(2+)-activated K(+) (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca(2+) sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca(2+) spark, which activates ~15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca(2+)] resulting from Ca(2+) sparks, and the kinetic model of BK channels, we estimate that an average Ca(2+) spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ~600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca(2+) sparks using explicit knowledge of the spatial relationship between RYRs (the Ca(2+) source) and BK channels (the Ca(2+) target).  相似文献   

14.
A Ca(2+) spark arises when a cluster of sarcoplasmic reticulum (SR) channels (ryanodine receptors or RyRs) opens to release calcium in a locally regenerative manner. Normally triggered by Ca(2+) influx across the sarcolemmal or transverse tubule membrane neighboring the cluster, the Ca(2+) spark has been shown to be the elementary Ca(2+) signaling event of excitation-contraction coupling in heart muscle. However, the question of how the Ca(2+) spark terminates remains a central, unresolved issue. Here we present a new model, "sticky cluster," of SR Ca(2+) release that simulates Ca(2+) spark behavior and enables robust Ca(2+) spark termination. Two newly documented features of RyR behavior have been incorporated in this otherwise simple model: "coupled gating" and an opening rate that depends on SR lumenal [Ca(2+)]. Using a Monte Carlo method, local Ca(2+)-induced Ca(2+) release from clusters containing between 10 and 100 RyRs is modeled. After release is triggered, Ca(2+) flux from RyRs diffuses into the cytosol and binds to intracellular buffers and the fluorescent Ca(2+) indicator fluo-3 to produce the model Ca(2+) spark. Ca(2+) sparks generated by the sticky cluster model resemble those observed experimentally, and Ca(2+) spark duration and amplitude are largely insensitive to the number of RyRs in a cluster. As expected from heart cell investigation, the spontaneous Ca(2+) spark rate in the model increases with elevated cytosolic or SR lumenal [Ca(2+)]. Furthermore, reduction of RyR coupling leads to prolonged model Ca(2+) sparks just as treatment with FK506 lengthens Ca(2+) sparks in heart cells. This new model of Ca(2+) spark behavior provides a "proof of principle" test of a new hypothesis for Ca(2+) spark termination and reproduces critical features of Ca(2+) sparks observed experimentally.  相似文献   

15.
Ryanodine receptors (RyRs) of pulmonary arterial smooth muscle cells (PASMCs) play important roles in major physiological processes such as hypoxic pulmonary vasoconstriction and perinatal pulmonary vasodilatation. Recent studies show that three subtypes of RyRs are coexpressed and RyR-gated Ca2+ stores are distributed heterogeneously in systemic vascular myocytes. However, the molecular identity and subcellular distribution of RyRs have not been examined in PASMCs. In this study we detected mRNA and proteins of all three subtypes in rat intralobar PASMCs using RT-PCR and Western blot. Quantitative real-time RT-PCR showed that RyR2 mRNA was most abundant, approximately 15-20 times more than the other two subtypes. Confocal fluorescence microscopy revealed that RyRs labeled with BODIPY TR-X ryanodine were localized in the peripheral and perinuclear regions and were colocalized with sarcoplasmic reticulum labeled with Fluo-5N. Immunostaining showed that the subsarcolemmal regions exhibited clear signals of RyR1 and RyR2, whereas the perinuclear compartments contained mainly RyR1 and RyR3. Ca2+ sparks were recorded in both regions, and their activities were enhanced by a subthreshold concentration of caffeine or by endothelin-1, indicating functional RyR-gated Ca2+ stores. Moreover, 18% of the perinuclear sparks were prolonged [full duration/half-maximum (FDHM) = 193.3 +/- 22.6 ms] with noninactivating kinetics, in sharp contrast to the typical fast inactivating Ca2+ sparks (FDHM = 44.6 +/- 3.2 ms) recorded in the same PASMCs. In conclusion, multiple RyR subtypes are expressed differentially in peripheral and perinuclear RyR-gated Ca2+ stores; the molecular complexity and spatial heterogeneity of RyRs may facilitate specific Ca2+ regulation of cellular functions in PASMCs.  相似文献   

16.
RYR2 proteins contribute to the formation of Ca(2+) sparks in smooth muscle   总被引:3,自引:0,他引:3  
Calcium release through ryanodine receptors (RYR) activates calcium-dependent membrane conductances and plays an important role in excitation-contraction coupling in smooth muscle. The specific RYR isoforms associated with this release in smooth muscle, and the role of RYR-associated proteins such as FK506 binding proteins (FKBPs), has not been clearly established, however. FKBP12.6 proteins interact with RYR2 Ca(2+) release channels and the absence of these proteins predictably alters the amplitude and kinetics of RYR2 unitary Ca(2+) release events (Ca(2+) sparks). To evaluate the role of specific RYR2 and FBKP12.6 proteins in Ca(2+) release processes in smooth muscle, we compared spontaneous transient outward currents (STOCs), Ca(2+) sparks, Ca(2+)-induced Ca(2+) release, and Ca(2+) waves in smooth muscle cells freshly isolated from wild-type, FKBP12.6(-/-), and RYR3(-/-) mouse bladders. Consistent with a role of FKBP12.6 and RYR2 proteins in spontaneous Ca(2+) sparks, we show that the frequency, amplitude, and kinetics of spontaneous, transient outward currents (STOCs) and spontaneous Ca(2+) sparks are altered in FKBP12.6 deficient myocytes relative to wild-type and RYR3 null cells, which were not significantly different from each other. Ca(2+) -induced Ca(2+) release was similarly augmented in FKBP12.6(-/-), but not in RYR3 null cells relative to wild-type. Finally, Ca(2+) wave speed evoked by CICR was not different in RYR3 cells relative to control, indicating that these proteins are not necessary for normal Ca(2+) wave propagation. The effect of FKBP12.6 deletion on the frequency, amplitude, and kinetics of spontaneous and evoked Ca(2+) sparks in smooth muscle, and the finding of normal Ca(2+) sparks and CICR in RYR3 null mice, indicate that Ca(2+) release through RYR2 molecules contributes to the formation of spontaneous and evoked Ca(2+) sparks, and associated STOCs, in smooth muscle.  相似文献   

17.
Ca(2+) sparks are small, localized cytosolic Ca(2+) transients due to Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the present study is to determine experimentally the level of Ca(2+) to which the BK channels are exposed during a spark. Using tight seal, whole-cell recording, we have analyzed the voltage-dependence of the STOC conductance (g((STOC))), and compared it to the voltage-dependence of BK channel activation in excised patches in the presence of different [Ca(2+)]s. The Ca(2+) sparks did not change in amplitude over the range of potentials of interest. In contrast, the magnitude of g((STOC)) remained roughly constant from 20 to -40 mV and then declined steeply at more negative potentials. From this and the voltage dependence of BK channel activation, we conclude that the BK channels underlying STOCs are exposed to a mean [Ca(2+)] on the order of 10 microM during a Ca(2+) spark. The membrane area over which a concentration > or =10 microM is reached has an estimated radius of 150-300 nm, corresponding to an area which is a fraction of one square micron. Moreover, given the constraints imposed by the estimated channel density and the Ca(2+) current during a spark, the BK channels do not appear to be uniformly distributed over the membrane but instead are found at higher density at the spark site.  相似文献   

18.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

19.
Effects of acute hypoxia on intracellular Ca(2+) concentration ([Ca(2+)](i)) and cell length were recorded simultaneously in proximal and distal pulmonary (PASMCs) and femoral (FASMCs) arterial smooth muscle cells. Reducing PO(2) from normoxia to severe hypoxia (PO(2) < 10 mmHg) caused small but significant decreases in length and a reversible increase in [Ca(2+)](i) in distal PASMCs and a small decrease in length in proximal PASMCs but had no effect in FASMCs, even though all three cell types contracted significantly to vasoactive agonists. Inhibition of voltage-dependent K(+) (K(V)) channel with 4-aminopyridine produced a greater increase in [Ca(2+)](i) in distal than in proximal PASMCs. In distal PASMCs, severe hypoxia caused a slight inhibition of K(V) currents; however, it elicited further contraction in the presence of 4-aminopyridine. Endothelin-1 (10(-10) M), which itself did not alter cell length or [Ca(2+)](i), significantly potentiated the hypoxic contraction. These results suggest that hypoxia only has small direct effects on porcine PASMCs. These effects cannot be fully explained by inhibition of K(V) channels and were greatly enhanced via synergistic interactions with the endothelium-derived factor endothelin-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号