首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypotheses of taxic homology are hypotheses of taxa (groups). Hypotheses of transformational homology are hypotheses of transformations between character states within the context of an explicit model of character evolution. Taxic and transformational homology are discussed with respect to secondary loss and reversal in the context of three-taxon statement analysis and standard cladistic analysis. We argue that it is important to distinguish complement relation homologies from those that we term paired homologues. This distinction means that the implementation of three-taxon statement analysis needs modification if all data are to be considered potentially informative. Modified three-taxon statement analysis and standard cladistic analysis yield different results for the example of character reversal provided by Kluge (1994) for both complement relation data and paired homologues. We argue that these different results reflect the different approaches of standard cladistic analysis and modified t.t.s. analysis. In the standard cladistic approach, absence, as secondary loss, can provide evidence for a group. This is because the standard cladistic approach implements a transformational view of homology. In the t.t.s approach discussed in this paper, absence can only be interpreted as secondary loss by congruence with other data; absence alone can never provide evidence for a group. In this respect, the modified t.t.s. approach is compatible with a taxic view of homology.  相似文献   

2.
[m]3ta is a method that seeks to implement a taxic view of homology. The method is consistent with Patterson's tests for discriminating homology from nonhomology. Contrary to the claims of Kluge and Farris, (1999, Cladistics 15, 205–212), m3ta is not a phenetic method—nor does it necessarily place the basal split in a tree between the phenetically most divergent taxa. [m]3ta does not seek to accurately recover phylogeny but rather it seeks to maximize the information content of taxic homology propositions. [m]3ta is a method of classification in which the unit of analysis is the relation of homology. [m]3ta differs from all phylogenetic methods because the units of analyses in phylogenetic methods, including sca, are transformation series.  相似文献   

3.
The first cladistic analysis of phylogeny in the class Scaphopoda (Steiner 1992a,1996) examined relationships among family and selected sub-family taxa using morphological data. A preferred/ consensus tree of relationships illustrated monophyly of the orders Dentaliida and Gadilida, partial resolution among dentaliid families, and complete resolution among gadilid taxa. However, several alternative replications of the analysis, including use of a revised data matrix, did not produce the reported tree number or level of resolution; in all cases, monophyly of the Dentaliida was not supported by strict consensus of resultant parsimonious trees. Reanalysis, using unordered characters and outgroup rooting, only clearly resolves monophyly of the Gadilida and the sister relationship of the Entalinidae with the remaining gadilid families. These analyses emphasize the need for more comparative data and thorough parsimony analysis in scaphopod cladistic phylogenetics, as relationships in this class are still some way from resolution.  相似文献   

4.
The sequential stages culminating in the publication of a morphological cladistic analysis of weevils in the Exophthalmus genus complex (Coleoptera: Curculionidae: Entiminae) are reviewed, with an emphasis on how early‐stage homology assessments were gradually evaluated and refined in light of intermittent phylogenetic insights. In all, 60 incremental versions of the evolving character matrix were congealed and analysed, starting with an assembly of 52 taxa and ten traditionally deployed diagnostic characters, and ending with 90 taxa and 143 characters that reflect significantly more narrow assessments of phylogenetic similarity and scope. Standard matrix properties and analytical tree statistics were traced throughout the analytical process, and series of incongruence length indifference tests were used to identify critical points of topology change among succeeding matrix versions. This kind of parsimony‐contingent rescoping is generally representative of the inferential process of character individuation within individual and across multiple cladistic analyses. The expected long‐term outcome is a maturing observational terminology in which precise inferences of homology are parsimony‐contingent, and the notions of homology and parsimony are inextricably linked. This contingent view of cladistic character individuation is contrasted with current approaches to developing phenotype ontologies based on homology‐neutral structural equivalence expressions. Recommendations are made to transparently embrace the parsimony‐contingent nature of cladistic homology.  相似文献   

5.
The relevance of the Modern Evolutionary Synthesis to the foundations of taxonomy (the construction of groups, both taxa and phyla) is reexamined. The nondimensional biological species concept, and not the multidimensional, taxonomic, species notion which is based on it, represents a culmination of an evolutionary understanding. It demonstrates how established evolutionary mechanisms acting on populations of sexually reproducing organisms provide the testable ontological basis of the species category. We question the ontology and epistemology of the phylogenetic or evolutionary species concept, and find it to be a fundamentally untenable one. We argue that at best, the phylogenetic species is a taxonomic species notion which is not a theoretical concept, and therefore should not serve as foundation for taxonomic theory in general, phylogenetics, and macroevolutionary reconstruction in particular. Although both evolutionary systematists and cladists are phylogeneticists, the reconstruction of the history of life is fundamentally different in these two approaches. We maintain that all method, including taxonomic ones, must fall out of well corroborated theory. In the case of taxonomic methodology the theoretical base must be evolutionary. The axiomatic assumptions that all phena, living and fossil, must be holophyletic taxa (species, and above), resulting from splitting events, and subsequently that evaluation of evolutionary change must be based on a taxic perspective codified by the Hennig ian taxonomic species notion, are not testable premises. We discuss the relationship between some biologically, and therefore taxonomically, significant patterns in nature, and the process dependence of these patterns. Process-free establishment of deductively tested “genealogies” is a contradiction in terms; it is impossible to “recover” phylogenetic patterns without the investment of causal and processual explanations of characters to establish well tested taxonomic properties of these (such as homologies, apomorphies, synapomorphies, or transformation series). Phylogenies of either characters or of taxa are historical-narrative explanations (H-N Es), based on both inductively formulated hypotheses and tested against objective, empirical evidence. We further discuss why construction of a “genealogy”, the alleged framework for “evolutionary reconstruction”, based on a taxic, cladistic outgroup comparison and a posteriori weighting of characters is circular. We define how the procedure called null-group comparison leads to the noncircular testing of the taxonomic properties of characters against which the group phylogenies must be tested. This is the only valid rooting procedure for either character or taxon evolution. While the Hennig -principle is obviously a sound deduction from the theory of descent, cladistic reconstruction of evolutionary history itself lacks a valid methodology for testing transformation hypotheses of both characters and species. We discuss why the paleontological method is part of comparative biology with a critical time dimension ana why we believe that an “ontogenetic method” is not valid. In our view, a merger of exclusive (causal and interactive, but best described as levels of organization) and inclusive (classificatory) hierarchies has not been accomplished by a taxic scheme of evolution advocated by some. Transformational change by its very nature is not classifiable in an inclusive hierarchy, and therefore no classification can fully reflect the causal and interactive chains of events constituting phylogeny, without ignoring and contradicting large areas of corroborated evolutionary theory. Attempts to equate progressive evolutionary change with taxic schemes by Haeckel were fundamentally flawed. His ideas found 19th century expression in a taxic perception of the evolutionary process (“phylogenesis”), a merger of typology, hierarchic and taxic notions of progress, all rooted in an ontogenetic view of phylogeny. The modern schemes of genealogical hierarchies, based on punctuation and a notion of “species” individuality, have yet to demonstrate that they hold promise beyond the Haeckel ian view of progressive evolution.  相似文献   

6.
Current notions on homology, and its recognition, causation, and explanation are reviewed in this report. The focus is primarily on concepts because the formulation of precise definitions of homology has contributed little to our understanding of the issue. Different aspects or concepts of homology have been contrasted, currently the most important ones being the distinction between systematic and biological concepts. The systematic concept of homology focuses on common ancestry and on taxa; the biological concept tries to explain patterns of conservatism in evolution by shared developmental constraints. Similarity or correspondence is generally accepted as a primary criterion in the delimitation of homologues, albeit that this criterion is not without practical and theoretical problems. Apart from similarity, the biological concept of homology also stresses developmental individuality of putative homologous structures. Structural and positional aspects of homology can be separated, with positional homology acquiring an independent status. Similarity, topographic relationships, and ontogenetic development cannot be tests of homology. Within the cladistic paradigm, the most decisive test of homology is that of congruence; proponents of the biological-homology concept have been less concerned with test implications. Adopting a hierarchical view of nature suggests that characters have to be homologized at their appropriate level of organization. A taxic or systematic approach to homology has precedence over a transformational or biological approach. Nevertheless, pattern analysis and process explanations are not independent of each other.  相似文献   

7.
Problems in polychaete systematics   总被引:4,自引:0,他引:4  
Some of the intriguing issues in current polychaete systematics are reviewed. (1) The root of the `polychaete' tree. Currently there are two major hypotheses concerning the root position among polychaetes. One is based on rooting cladograms with outgroups such as Mollusca and result in simple-bodied taxa such as Opheliidae and Questidae forming a basal annelid grade along with Clitellata. Other hypotheses do not use outgroup rooting but involve scenarios on the evolution of the group and would place taxa in Aciculata as basal annelids, thus making Aciculata and Phyllodocida paraphyletic. Molecular sequence data has been of little help in resolving this issue thus far, largely due to limited taxon sampling. (2) Paraphyly. Owing, in part, to a tradition involving the emphasis on differences among taxa, and the application of Linnean ranks (e.g., family), paraphyly is undoubtedly a widespread phenomenon in polychaete systematics. An example of this has been proposed already for Spionidae. If the tree topology and rooting used by Blake & Arnofsky (1999) is correct, Spionidae is made paraphyletic by the recognition of the following four family-ranked taxa; Trochochaetidae, Poecilochaetidae, Longosomatidae and Uncispionidae. Another possible example is seen with Cirratulidae. A preliminary cladistic analysis shows that it is entirely possible that seven other taxa recognised as families may be nested within Cirratulidae. These include Acrocirridae, Ctenodrilidae, Fauveliopsidae, Flabelligeridae, Flotidae, Poeobiidae and Sternaspidae. (3) Problematic taxa. Apart from the problems exposed by the analysis of Cirratuliformia, the position of some of these groups, such as Aberranta, Alciopidae, Hesionides,Lopadorhynchidae, Microphthalmus,Nerillidae, Spinther,Tomopteridae and Sabellariidae, is discussed.  相似文献   

8.
9.
Abstract Absolute criteria for evaluating cladistic analyses are useful, not only because cladistic algorithms impose structure, but also because applications of cladistic results demand some assessment of the degree of corroboration of the cladogram. Here, a means of quantitative evaluation is presented based on tree length. The length of the most-parsimonious tree reflects the degree to which the observed characters co-vary such that a single tree topology can explain shared character states among the taxa. This “cladistic covariation” can be quantified by comparing the length of the most parsimonious tree for the observed data set to that found for data sets with random covariation of characters. A random data set is defined as one in which the original number of characters and their character states are maintained, but for each character, the states are randomly reassigned to the taxa. The cladistic permutation tail probability, PTP, is defined as the estimate of the proportion of times that a tree can be found as short or shorter than the original tree. Significant cladistic covariation exists if the PTP is less than a prescribed value, for example, 0.05. In case studies based on molecular and morphological data sets, application of the PTP shows that:
  • 1 In the comparison of four different molecular data sets for orders of mammals, the sequence data set for alpha hemoglobin does not have significant cladistic covariation, while that for alpha crystallin is highly significant. However, when each data set was reduced to the 11 common taxa in order to standardize comparison, reduced levels of cladistic covariation, with no clear superiority of the alpha crystallin data, were found. Morphological data for these 11 taxa had a highly significant PTP, producing a tree roughly congruent with those for the three molecular sets with marginal or significant PTP values. Merging of all data sets, with the exclusion of the poorly structured alpha hemoglobin data, produced a data set with a significant PTP, and provides an estimate of the phylogenetic relationships among these 11 orders of mammals.
  • 2 In an analysis of lactalbumin and lysozyme DNA sequence data for four taxa, purine-pyrimidine coding yields a data set with significant cladistic covariation, while other codings fail. The data for codon position 3 taken alone exhibit the strongest cladistic covariation.
  • 3 A data set based on flavonoids in taxa of Polygonum initially yields a significant PTP; however, deletion of identically scored taxa leaves no significant cladistic covariation.
  • 4 For mitochondrial DNA data on population genome types for four species of the crested newt, there is significant cladistic covariation for the set of all genome types, and among the five mtDNA genome types within one of the species. However, a conditional PTP test that assumes species monophyly shows that no significant cladistic covariation exists among the fur species for these data.
  • 5 In an application of the test to a group of freshwater insects, as preliminary to biological monitoring, individual subsets of the taxonomic data representing larval, pupal, and adult stages had non-significant PTPs, while the complete data set showed significant cladistic structure.
  相似文献   

10.
The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by the presence of an extended polyglutamine stretch (polyQ) in the unstructured C-terminus of the human ataxin-3 (AT3) protein. The structured N-terminal Josephin domain (JD) of AT3 is conserved within a novel family of potential ubiquitin proteases, the JD-containing proteins, which are sub-divided into two groups termed ataxins and Josephins. These AT3 orthologs are encoded by the genomes of organisms ranging from Plasmodium falciparum to humans, with most species possessing more than one homolog. While Josephins consist of JDs alone, ataxins contain additional functional domains that may influence their enzyme activity. Here, we show that the enzyme activity of human AT3 (hAT3) is not affected by the length of polyQ in its C-terminus, even when it is in the range associated with SCA3. We also show that JDs of all human proteins with homology to AT3 and its homologs from various species possess de-ubiquitination activity. These results establish JD-containing proteins as a novel family of active de-ubiquitination enzymes with wide phylogenic distribution.  相似文献   

11.
Modified three-taxon analysis (m3ta), a method in which three-taxon statements are produced from a nonadditive binary coding of the original data, has been proposed as a model-free way of assessing monophyly of groups, utilizing the taxic concept of homology. In fact the taxic concept amounts to a model, and, further, one that seems to conflict directly with evolution. M3ta is a type of grouping by all similarities and, like all such methods, would require a clock assumption if the tree were to be interpreted phylogenetically. Groupings based on this method, consequently, are phenetic, and they have little to do with monophyly. It has been proposed to define phylogenetic systematics in terms of grouping only by presences. While popular among advocates of 3ta, such definitions are completely inadequate, both because absences may be apomorphic and because phenetic methods can disagree with phylogenetic ones even when no absences are involved.  相似文献   

12.
ONTOGENY AND THE HIERARCHY OF TYPES   总被引:1,自引:0,他引:1  
Abstract— The long history of belief in a parallelism between ontogeny and a hierarchical order of natural things is reviewed. The meaning of von Baerian recapitulation is analyzed and its implications for cladistic methodology are discussed at two levels: ontogeny and homology. The basic problem inherent in the purported parallelism is that the order of natural things (i.e., the taxic approach to homology) is part of the "world of being" of Platonic ideas, whereas ontogeny and phylogeny (i.e., the transformational approach to homology) belong to Plato's "world of becoming." These two "genera of existence," as Plato put it, being and becoming, are incompatible but complementary views of nature.  相似文献   

13.
Within phylogenetics, two methods are known to implement cladistics: parsimony or maximum parsimony (MP) and three-item analysis (3ia). Despite the lack of suitable software, 3ia is occasionally used in systematic, and more regularly, in historical biogeography. Here, we present LisBeth, the first and only phylogenetic/biogeographic program freely available that uses the 3ia approach and offer some insights into its theoretical propositions. LisBeth does not rely on the conventional taxon/character matrix. Instead, characters are represented as rooted trees. LisBeth performs 3ia analyses based on maximum congruence of three-item statements and calculates the intersection tree (which differs from usual consensus). In biogeography, it applies the transparent method to handle widespread taxa and implements paralogy-free subtree analysis to remove redundant distributions. For the sake of interoperability, LisBeth may import/export characters from/to matrix in NEXUS format, allowing comparison with other cladistic programs. LisBeth also imports phylogenetic characters from Xper2 knowledge bases.  相似文献   

14.
Homology can have different meanings for different kinds of biologists. A phylogenetic view holds that homology, defined by common ancestry, is rigorously identified through phylogenetic analysis. Such homologies are taxic homologies (=synapomorphies). A second interpretation, "biological homology" emphasizes common ancestry through the continuity of genetic information underlying phenotypic traits, and is favored by some developmental geneticists. A third kind of homology, deep homology, was recently defined as "the sharing of the genetic regulatory apparatus used to build morphologically and phylogenetically disparate features." Here we explain the commonality among these three versions of homology. We argue that biological homology, as evidenced by a conserved gene regulatory network giving a trait its "essential identity" (a Character Identity Network or "ChIN") must also be a taxic homology. In cases where a phenotypic trait has been modified over the course of evolution such that homology (taxic) is obscured (e.g. jaws are modified gill arches), a shared underlying ChIN provides evidence of this transformation. Deep homologies, where molecular and cellular components of a phenotypic trait precede the trait itself (are phylogenetically deep relative to the trait), are also taxic homologies, undisguised. Deep homologies inspire particular interest for understanding the evolutionary assembly of phenotypic traits. Mapping these deeply homologous building blocks on a phylogeny reveals the sequential steps leading to the origin of phenotypic novelties. Finally, we discuss how new genomic technologies will revolutionize the comparative genomic study of non-model organisms in a phylogenetic context, necessary to understand the evolution of phenotypic traits.  相似文献   

15.
Data on fossil taxa can, and should, be incorporated into cladistic analyses. Potential problems with such analyses include large amounts of missing data, and uncertainty about homology of parts that are present. Ambiguity of character data may also occur with extant taxa, but rarely to the extent that it occurs in fossil data. Such ambiguity reduces the strength of the test of character congruence among taxa, in effect relaxing the criterion of parsimony. In order to minimize such effects, composite fossil taxa should be avoided when possible, and polymorphisms reduced by breaking terminals into monomorphic subunits. When results including fossils differ radically from those that exclude fossils, such differences should be approached with caution, keeping in mind the reduced strength of the parsimony analysis when large numbers of cells in a matrix are scored as ambiguous. At this point, there is no simple way to compare the “strength” of parsimony between two data sets that have different numbers of characters and/or taxa in relation to missing data. However, methods under development may provide ways to incorporate the effect of missing values into relative measures of group support such as Bremer support, character removal, and the bootstrap.  相似文献   

16.
THREE STEPS OF HOMOLOGY ASSESSMENT   总被引:6,自引:1,他引:5  
Abstract — In 1991 de Pinna (Cladistics 7: 367–394) coined the term primary homology as the putative homology statements prior to tree reconstruction. However, some confusion still exists regarding the conjectural nature of homology and to the analysis of DNA sequences. By dividing de Pinna's term primary homology into topographical identity and character state identity, we emphasize the sequential refinement of putative homology statements. We discuss the problem of transformational versus taxic homology and explain the application of our terms to DNA sequence data.  相似文献   

17.
Abstract— Inspection of trees of varying lengths (by the option ALL TREES, which produces a histogram for tree lengths in PAUP 3.0) has been used to evaluate cladistic data and results. For example, a result may be judged more effective if the groups supported in the most parsimonious tree are preserved in trees that require increasingly greater amounts of homoplasy. Evaluation of grouping purely on the basis of this stability criterion ignores other highly relevant aspects of cladistic results. In particular, some data sets may incorporate additional taxa that introduce homoplasy to the shortest tree in a manner that concurrently allows for a revised understanding of character optimization patterns. These taxa may render groups preserved in the shortest tree less stable, but this result is not necessarily deficient if the homoplasy underlying such instability reveals possible character state changes for the given taxa irretrievable from the original matrix. The hypothetical example described here is relevant to so called "stem", "basal" or "plesiomorphic sister" taxa that are commonly considered in studies of both fossil and extant taxa.  相似文献   

18.
When molecules and morphology produce incongruent hypotheses of primate interrelationships, the data are typically viewed as incompatible, and molecular hypotheses are often considered to be better indicators of phylogenetic history. However, it has been demonstrated that the choice of which taxa to include in cladistic analysis as well as assumptions about character weighting, character state transformation order, and outgroup choice all influence hypotheses of relationships and may positively influence tree topology, so that relationships between extant taxa are consistent with those found using molecular data. Thus, the source of incongruence between morphological and molecular trees may lie not in the morphological data themselves but in assumptions surrounding the ways characters evolve and their impact on cladistic analysis. In this study, we investigate the role that assumptions about character polarity and transformation order play in creating incongruence between primate phylogenies based on morphological data and those supported by multiple lines of molecular data. By releasing constraints imposed on published morphological analyses of primates from disparate clades and subjecting those data to parsimony analysis, we test the hypothesis that incongruence between morphology and molecules results from inherent flaws in morphological data. To quantify the difference between incongruent trees, we introduce a new method called branch slide distance (BSD). BSD mitigates many of the limitations attributed to other tree comparison methods, thus allowing for a more accurate measure of topological similarity. We find that releasing a priori constraints on character behavior often produces trees that are consistent with molecular trees. Case studies are presented that illustrate how congruence between molecules and unconstrained morphological data may provide insight into issues of polarity, transformation order, homology, and homoplasy.  相似文献   

19.
CONCEPTS AND TESTS OF HOMOLOGY IN THE CLADISTIC PARADIGM   总被引:17,自引:3,他引:14  
Abstract— Logical equivalence between the notions of homology and synapomorphy is reviewed and supported. So-called transformational homology embodies two distinct logical components, one related to comparisons among different organisms and the other restricted to comparisons within the same organism. The former is essentially hierarchical in nature, thus being in fact a less obvious form of taxic homology. The latter is logically equivalent to so-called serial homology in a broad sense (including homonomy, mass homology or iterative homology). Of three tests of homology proposed to date (similarity, conjunction and congruence) only congruence serves as a test in the strict sense. Similarity stands at a basic level in homology propositions, being the source of the homology conjecture in the first place. Conjunction is unquestionably an indicator of non-homology, but it is not specific about the pairwise comparison where non-homology is present, and depends on a specific scheme of relationship in order to refute a hypothesis of homology. The congruence test has been previously seen as an application of compatibility analysis. However, congruence is more appropriately seen as an expression of strict parsimony analysis. A general theoretical solution is proposed to determine evolution of characters with ambiguous distributions, based on the notion of maximization of homology propositions. According to that notion, ambiguous character-state distributions should be resolved by an optimization that maximizes reversals relative to parallelisms. Notions of homology in morphology and molecular biology are essentially the same. The present tendency to adopt different terminologies for the two sources of data should be avoided, in order not to obscure the fundamental uniformity of the concept of homology in comparative biology. “A similar hierarchy is found both in ‘structures’ and in ‘functions’. In the last resort, structure (i.e. order of parts) and function (order of processes) may be the very same thing […].” L. von Bertalanlfy “[…] it is the fact that certain criteria enable us to match parts of things consistently which suggests that mechanisms of certain kinds must have been involved in their origin.” N. Jardine and C. Jardine  相似文献   

20.
The distinctly non‐random diversity of organismal form manifests itself in discrete clusters of taxa that share a common body plan. As a result, analyses of disparity require a scalable comparative framework. The difficulties of applying geometric morphometrics to disparity analyses of groups with vastly divergent body plans are overcome partly by the use of cladistic characters. Character‐based disparity analyses have become increasingly popular, but it is not clear how they are affected by character coding strategies or revisions of primary homology statements. Indeed, whether cladistic and morphometric data capture similar patterns of morphological variation remains a moot point. To address this issue, we employ both cladistic and geometric morphometric data in an exploratory study of disparity focussing on caecilian amphibians. Our results show no impact on relative intertaxon distances when different coding strategies for cladistic characters were used or when revised concepts of homology were considered. In all instances, we found no statistically significant difference between pairwise Euclidean and Procrustes distances, although the strength of the correlation among distance matrices varied. This suggests that cladistic and geometric morphometric data appear to summarize morphological variation in comparable ways. Our results support the use of cladistic data for characterizing organismal disparity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号