共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade 总被引:4,自引:13,他引:4
下载免费PDF全文

The interaction of Ca2+ and Ba2+ with a Ca2+-activated K+ channel from rabbit skeletal muscle membranes is studied in planar lipid bilayers. At [Ca2+] greater than or equal to 100 microM in the cis side (the side to which the vesicles are added) and at positive voltages, the channel kinetics consisted of bursts of activity interrupted by long periods of quiescence. We found that the reciprocal of the mean burst time increases linearly with [Ca2+], whereas the mean time for the quiescent (closed) periods is independent of [Ca2+]. The number of quiescent periods is reduced by increasing [K+]. Micromolar amounts of cis Ba2+ do not activate the channel, but induce similar "slow" closings. Also, in this case, the mean burst time is inversely proportional to the [Ba2+] and the mean closed time is independent of [Ba2+]. Raising [K+] either symmetrically or only in the trans side relieved the Ba2+ effect. trans Ba2+ also induces changes in the slow kinetics, but in millimolar amounts. These results suggest that the quiescent periods correspond to a channel blocked by a Ba ion. The voltage dependence of the cis blockade indicates that the Ba2+ binding site is past the middle of the membrane field. The similarities in the slow kinetics induced by Ca2+ and Ba2+ suggest that Ca2+ blocks the channel by binding to the same site. However, binding of Ca2+ to the site is 10(5)- fold weaker. 相似文献
2.
3.
Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage- dependent Ca2+ binding reactions 总被引:9,自引:14,他引:9
下载免费PDF全文

《The Journal of general physiology》1983,82(4):511-542
The gating kinetics of a Ca2+-activated K+ channel from adult rat muscle plasma membrane are studied in artificial planar bilayers. Analysis of single-channel fluctuations distinguishes two Ca2+- and voltage-dependent processes: (a) short-lived channel closure (less than 1 ms) events appearing in a bursting pattern; (b) opening and closing events ranging from one to several hundred milliseconds in duration. The latter process is studied independently of the first and is denoted as the primary gating mode. At constant voltage, the mean open time of the primary gating mode is a linear function of the [Ca2+], whereas the mean closed time is a linear function of the reciprocal [Ca2+]. In the limits of zero and infinite [Ca2+], the mean open and the mean closed times are, respectively, independent of voltage. These results are predicted by a kinetic scheme consisting of the following reaction steps: (a) binding of Ca2+ to a closed state; (b) channel opening; (c) binding of a second Ca2+ ion. In this scheme, the two Ca2+ binding reactions are voltage dependent, whereas the open-closed transition is voltage independent. The kinetic constant derived for this scheme gives an accurate theoretical fit to the observed equilibrium open-state probability. The results provide evidence for a novel regulatory mechanism for the activity of an ion channel: modulation by voltage of the binding of an agonist molecule, in this case, Ca2+ ion. 相似文献
4.
Low-conductance chloride channel from skeletal muscle SR vesicles of the crayfish Astacus fluviatilis was incorporated into planar lipid bilayers and its basic characteristics were investigated. The channel has a relatively low unitary conductance of 26 pS in symmetrical 160 mmol/l choline-chloride. The dependence of the channel conductance on Cl- concentration shows saturating behavior with a maximum conductance of 37 pS and an ionic activity for half-maximum conductance Km = 75 mmol/l. The channel exhibits a complex kinetics with several modes of activity. Open state probability slightly decreases with the increasing absolute value of voltage. The channel activity does not appear to be dependent on the presence of Ca2+ ions. The channel is effectively inhibited by DIDS, a stilbene derivative. The permeability properties of the channel are similar to the specific behavior of the "double-barrelled" channel from Torpedo electroplax described by Miller and White (1984). 相似文献
5.
Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane 总被引:2,自引:2,他引:2
下载免费PDF全文

Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites. 相似文献
6.
Competitive Mg2+ block of a large-conductance, Ca(2+)-activated K+ channel in rat skeletal muscle. Ca2+, Sr2+, and Ni2+ also block
下载免费PDF全文

W B Ferguson 《The Journal of general physiology》1991,98(1):163-181
The patch-clamp technique was used to investigate the effect of intracellular Mg2+ (Mgi2+) on the conductance of the large-conductance, Ca(2+)-activated K+ channel in cultured rat skeletal muscle. Measurements of single-channel current amplitudes indicated that Mgi2+ decreased the K+ currents in a concentration-dependent manner. Increasing Mgi2+ from 0 to 5, 10, 20, and 50 mM decreased channel currents by 34%, 44%, 56%, and 73%, respectively, at +50 mV. The magnitude of the Mgi2+ block increased with depolarization. For membrane potentials of -50, +50, and +90 mV, 20 mM Mgi2+ reduced the currents 22%, 56%, and 70%, respectively. Mgi2+ did not change the reversal potential, indicating that Mg2+ does not permeate the channel. The magnitude of the Mgi2+ block decreased as the concentration of K+ was increased. At a membrane potential of +50 mv, 20 mM Mgi2+ reduced the currents 71%, 56%, and 25% for Ki+ of 75, 150, and 500 mM. These effects of Mgi2+, voltage, and K+ were totally reversible. Although the Woodhull blocking model could approximate the voltage and concentration effects of the Mgi2+ block (Kd approximately 30 mM with 150 mM symmetrical K+; electrical distance approximately 0.22 from the inner surface), the Woodhull model could not account for the effects of K+. Double reciprocal plots of 1/single channel current vs. 1/[K+] in the presence and absence of Mgi2+, indicated that the Mgi2+ block is consistent with apparent competitive inhibition between Mgi2+ and Ki+. Cai2+, Nii2+, and Sri2+ were found to have concentration- and voltage-dependent blocking effects similar, but not identical, to those of Mgi2+. These observations suggest the blocking by Mgi2+ of the large-conductance, Ca(2+)-activated K+ channel is mainly nonspecific, competitive with K+, and at least partially electrostatic in nature. 相似文献
7.
Soto MA González C Lissi E Vergara C Latorre R 《American journal of physiology. Cell physiology》2002,282(3):C461-C471
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o). 相似文献
8.
By fusing liposomes which contain in the mean only one pump unit (one intramembranous particle) to planar bilayers, and provoking the ouabain-blockable leakage conductance by the presence of n-decane, the predominant unit leakage conductance associated with one pump unit was estimated to be 40–50 pS, indicating the channel nature of the leakage pathway. 相似文献
9.
Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle. 总被引:6,自引:2,他引:6
下载免费PDF全文

Large unitary conductance Ca2+-activated K+ channels from smooth muscle membrane were incorporated into phospholipid planar bilayers, and the blockade induced by internally and externally applied Cs+ was characterized. Internal Cs+ blockade is voltage dependent and can be explained on the basis of a Cs+ binding to a site that senses 54% of the applied voltage, with an apparent dissociation constant, Kd(0), of 70 mM. On the other hand, external Cs+ blocks the channel in micromolar amounts, and the voltage dependence of blockade is a function of Cs+ concentration. The fractional electrical distance can be as large as 1.4 at 10 mM Cs+. This last result suggests that the channel behaves as a multi-ion pore. At large negative voltages the I-V relationships in the presence of external Cs+ show an upturn, indicating relief of Cs+ block. External Cs+ blockade is relieved by increasing the internal K+ concentration, but can be enhanced by increasing the external K+. All the characteristics of external Cs+ block can be explained by a model that incorporates a "knock-on" of Cs+ by K+. 相似文献
10.
Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers 总被引:6,自引:0,他引:6
Edward Moczydlowski Osvaldo Alvarez Cecilia Vergara Ramon Latorre 《The Journal of membrane biology》1985,83(3):273-282
Summary A Ca-activated, K-selective channel from plasma membrane of rat skeletal muscle was studied in artificial lipid bilayers formed from either phosphatidylethanolamine (PE) or phosphatidylserine (PS). In PE, the single-channel conductance exhibited a complex dependence on symmetrical K+ concentration that could not be described by simple Michaelis-Menten saturation. At low K+ concentrations the channel conductance was higher in PS membranes, but approached the same conductance observed in PE above 0.4m KCl. At the same Ca2+ concentration and voltage, the probability of channel opening was significantly greater in PS than PE. The differences in the conduction and gating, observed in the two lipids, can be explained by the negative surface charge of PS compared to the neutral PE membrane. Model calculations of the expected concentrations of K+ and Ca2+ at various distances from a PS membrane surface, using Gouy-Chapman-Stern theory, suggest that the K+-conduction and Ca2+-activation sites sense a similar fraction of the surface potential, equivalent to the local electrostatic potential at a distance of 9 Å from the surface. 相似文献
11.
Gating behaviors of a voltage-dependent and Ca2+-activated cation channel of yeast vacuolar membrane incorporated into planar lipid bilayer 总被引:2,自引:0,他引:2
Manabu Tanifuji Masayuki Sato Yoh Wada Yasuhiro Anraku Michiki Kasai 《The Journal of membrane biology》1988,106(1):47-55
Summary A voltage-dependent and Ca2+-activated cation channel found in the vacuolar membrane of the yeast,Saccharomyces cerevisiae, was incorporated into planar lipid bilayer and its gating characteristics were studied at the macroscopic and single-channel levels. The open-channel probability at steady state, which was estimated by the macroscopic current measurement, gave a maximum value at –10 mV and decreased in a graded fashion as the voltage became more positive or more negative. The steady-state voltage dependence was explained by assuming two independent gates, which had different rate constants and opposite voltage dependence. The fast-responding gate opened when the voltage of thecis side (the side to which the vesicles were added) was made more negative and the slow-responding gate behaved in the opposite direction. Relatively high concentrations of Ca2+, about 1mm, were required on thecis side for opening the slow gate in a voltage-dependent manner. DIDS increased the open-channel probability of the fast gate when added to thecis side, but was ineffective on the slow gate. 相似文献
12.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites. 相似文献
13.
Tharp DL Wamhoff BR Turk JR Bowles DK 《American journal of physiology. Heart and circulatory physiology》2006,291(5):H2493-H2503
A hallmark of smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and restenosis is suppression of SMC differentiation marker genes, proliferation, and migration. Blockade of intermediate-conductance Ca(2+)-activated K(+) channels (IKCa1) has been shown to inhibit restenosis after carotid balloon injury in the rat; however, whether IKCa1 plays a role in SMC phenotypic modulation is unknown. Our objective was to determine the role of IKCa1 channels in regulating coronary SMC phenotypic modulation and migration. In cultured porcine coronary SMCs, platelet-derived growth factor-BB (PDGF-BB) increased TRAM-34 (a specific IKCa1 inhibitor)-sensitive K(+) current 20-fold; increased IKCa1 promoter histone acetylation and c-jun binding; increased IKCa1 mRNA approximately 4-fold; and potently decreased expression of the smooth muscle differentiation marker genes smooth muscle myosin heavy chain (SMMHC), smooth muscle alpha-actin (SMalphaA), and smoothelin-B, as well as myocardin. Importantly, TRAM-34 completely blocked PDGF-BB-induced suppression of SMMHC, SMalphaA, smoothelin-B, and myocardin and inhibited PDGF-BB-stimulated migration by approximately 50%. Similar to TRAM-34, knockdown of endogenous IKCa1 with siRNA also prevented the PDGF-BB-induced increase in IKCa1 and decrease in SMMHC mRNA. In coronary arteries from high fat/high cholesterol-fed swine demonstrating signs of early atherosclerosis, IKCa1 expression was 22-fold higher and SMMHC, smoothelin-B, and myocardin expression significantly reduced in proliferating vs. nonproliferating medial cells. Our findings demonstrate that functional upregulation of IKCa1 is required for PDGF-BB-induced coronary SMC phenotypic modulation and migration and support a similar role for IKCa1 in coronary SMC during early coronary atherosclerosis. 相似文献
14.
Multi-ion conduction and selectivity in the high-conductance Ca++-activated K+ channel from skeletal muscle. 总被引:12,自引:8,他引:12
下载免费PDF全文

Open-channel ion permeation properties were investigated for Ca++-activated K+ (CaK) channels in solutions of K+ and its analogues T1+, Rb+, and NH4+. Single CaK channels were inserted into planar lipid bilayers composed of neutral phospholipids, and open-channel current-voltage (I-V) relations were measured in symmetrical and asymmetrical solutions of each of these individual ions. For all concentrations studied, the zero-voltage conductance falls in the sequence K+ greater than T1+ greater than NH4+ greater than Rb+. The shape of the I-V curve in symmetrical solutions of a single permeant ion is non-ohmic and is species-dependent. The I-V shape is sublinear for K+ and T1+ and superlinear for Rb+ and NH4+. As judged by reversal potentials under bi-ionic conditions with K+ on one side of the bilayer and the test cation on the other, the permeability sequence is T1+ greater than K+ greater than Rb+ greater than NH4+ at 300 mM, which differs from the conductance sequence. Symmetrical mixtures of K+ or NH4+ with Rb+ show a striking anomalous mole fraction behavior, i.e., a minimum in single-channel conductance when the composition of a two-ion mixture is varied at constant total ion concentration. This result is incompatible with present models that consider the CaK channel a single-ion pore. In total, the results show that the CaK channel finely discriminates among K+-like ions, exhibiting different energy profiles among these species, and that several such ions can reside simultaneously within the conduction pathway. 相似文献
15.
Mechanical deformation of normal ATP-replete human erythrocytes increased their permeability to Ca2+ sufficiently to turn on the Ca(2+)-activated K+ channel (the Gardos channel). When Ca2+ is absent, mechanical deformation of normal erythrocytes induces an equivalent increase the permeability of both Na+ and K+, In the presence of 0.1 to 1 mM Ca2+, a further increase in the K+ efflux rate was seen. There was no increase in Na+ flux above that induced by deformation itself. The involvement of the Ca(2+)-activated H channel was verified by showing the specific inhibitors of the channel, quinine and charybdotoxin, prevent the Ca(2+)-induced increase in K+ efflux. These results are consistent with a model of sickle cell dehydration proposed by Bookchin et al. ((1987) Prog. Clin. Biol. Res. 240, 193-200). The estimated rate of Ca2+ entry under these conditions (37 degrees C, 1000 dyne/cm2, and laminar shear) was about 1 mmol/loc per h. 相似文献
16.
By using single-channel recording techniques, we measured the conductance (gK) of the Ca(2+)-activated Maxi-K+ channel from the embryonic rat brain, and examined its dependence on K+ ions present in equimolar concentrations on both sides of the membrane patch. With ionic strength maintained constant by substitution of N-methyl-D-glucamine for K+, gK has a sigmoidal dependence upon [K+]. This result has been obscured in previous work by variations in ionic strength, which has a marked effect on single-channel conductance, especially in the limit for which this variable approaches zero. The gK versus [K+] relationship is described, theoretically, by a three-barrier, two-binding-site model in which the barrier that an ion must cross to leave the channel is decreased as [K+] is increased. 相似文献
17.
Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. 总被引:4,自引:0,他引:4
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel. 相似文献
18.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium. 相似文献
19.
A chloride-permeable channel from Phaseolus vulgaris roots incorporated into planar lipid bilayers 总被引:1,自引:0,他引:1
Balleza D Quinto C Sánchez F Gómez-Lagunas F 《Biochemical and biophysical research communications》2003,307(1):114-118
Ion channels are key participants in physiological processes of plant cells. Here, we report the first characterization of a high conductance, Cl(-)-permeable channel, present in enriched fractions of plasma membranes of bean root cells. The Cl(-) channel was incorporated into planar lipid bilayers and its activity was recorded under voltage clamp conditions. The channel is voltage-dependent, excludes the passage of cations (K(+), Na(+), and Ca(2+)), and is inhibited by micromolar concentrations of Zn(2+). The Cl(-) conductance here characterized represents a previously undescribed channel of plant cells. 相似文献
20.
Interaction of internal Ba2+ with a cloned Ca(2+)-dependent K+ (hslo) channel from smooth muscle
下载免费PDF全文

《The Journal of general physiology》1996,107(3):399-407
We have studied potassium currents through a cloned Ca(2+)-dependent K+ channel (hslo) from human myometrium. Currents were recorded in inside- out macropatches from membranes of Xenopus laevis oocytes. In particular, the inactivation-like process that these channels show at high positive potentials was assessed in order to explore its molecular nature. This current inhibition conferred a bell shape to the current- voltage curves. The kinetic and voltage dependence of this process suggested the possibility of a Ba2+ block. There were the following similarities between the inactivation process observed at zero-added Ba2+ and the internal Ba2+ block of hslo channels: (a) in the steady state, the voltage dependence of the current inhibition observed at zero-added Ba2+ was the same as the voltage dependence of the Ba2+ block; (b) the time constant for recovery from current decay at zero- added Ba2+ was the same as the time constant for current recovery from Ba2+ blockade; and (c) current decay was largely suppressed in both cases by adding a Ba2+ chelator [(+)-18-crown-6-tetracarboxylic acid] to the internal solution. In our experimental conditions, we determined that the Kd for the complex chelator-Ba2+ is 1.6 x 10(-10) M. We conclude that the current decay observed at zero-added Ba2+ to the internal solution is due to contaminant Ba2+ present in our solutions (approximately 70 nM) and not to an intrinsic gating process. The Ba2+ blocking reaction in hslo channels is bimolecular. Ba2+ binds to a site (Kd = 0.36 +/- 0.05 mM at zero applied voltage) that senses 92 +/- 25% of the potential drop from the internal membrane surface. 相似文献