首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L?1 days?1 reached the maximum cell concentration of 2,393 ± 241 mg L?1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.  相似文献   

2.
To obtain amino acid-analogue-resistant mutants the wild strain A9 of Arthrospira platensis was mutated by ethylmethane sulfonate (EMS). Mutagenic effects of strain A9 by EMS were studied. The experimental results indicated that the survival rate curve of strain A9 took a typical “exponential shape” with lethal dosage of EMS being 1 %. The survival of A9 strain was 13.2 % when treated with 0.4 % of EMS, and the resistant mutation rates to two amino acid analogues, ρ-fluorophenylalanine (FPA) and L-canavanine sulphate (CS), were greatly increased with the highest rates being at 4.9 × 10?4 and 3.24 × 10?4, respectively. By repeated screening, two stable mutants resistant to amino acid analogues, A9f resistant to FPA and A9c resistant to CS, were obtained. Resistances of the two mutants to corresponding amino acid-analogues were both significantly increased. Compared with their parent strain A9, A9f appeared larger than A9 performance in filament diameter, spiral diameter, spiral pitch, filament length and spiral number, and A9c showed much longer length and spiral pitch than those of the initial strain. Analysis results on amino acids compositions and contents showed that both two mutants accumulated quite higher concentration of amino acids in cells. The two mutants might be excellent high amino acids producing strain. By this means two useful mutants with stable genetic makers for further genetic study of A. platensis were obtained, which laid a good foundation for further study on the transformation of A. platensis.  相似文献   

3.
Journal of Applied Phycology - Arthrospira platensis is considered a beneficial food due to its nutrition-rich content. Research on the development of food enrichment with its biomass is an...  相似文献   

4.
Arthrospira (Spirulina) platensis was tested for biosorption properties. Preliminary experiments concerning biosorption kinetics were performed on Cr(III) ions. Equilibrium of biosorption was tested for Cr(III), Mn(II) and Mg(II) ions, since these elements are crucial for animals with metabolic disorders. In our study, Spirulina was proposed as a feed additive for animals suffering from diseases characterized by insulin dysregulation, abnormal adipose distribution and a high risk for laminitis. Maximum biosorption capacity of A. platensis, determined from Langmuir equation, was 45.2 for Cr(III), 44.3 for Mn(II) and 42.0 mg/g for Mg(II) ions. Biosorption of Mg(II) ions by microalga has never been studied so far. Finally, the raw and enriched microalgal biomass was examined by ICP-OES to determine its multielamental analysis before and after biosorption, FTIR to indicate functional groups that participated in biosorption and SEM-EDX to illustrate the binding of metal ions on the surface of algal biomass. ICP-OES showed that the content of elements significantly increased in the enriched A. platensis. FTIR spectroscopy evidenced that biosorption of metal ions was mainly due to carboxylate groups present on the microalgal cell wall. SEM analysis clearly showed that biosorption occurred. Arthrospira platensis turned out to be a good biosorbent of metal ions.  相似文献   

5.
ABSTRACT

The recovery of algal biomass is one of the critical steps involved in the commercial production of beneficial metabolites from Arthrospira platensis. Efficient and safe harvesting methods that do not sacrifice quality of final product are important for commercial application. Phytic acid (PA) is a natural non-toxic phytochemical widely distributed in plant tissues. Effect of PA from rice bran on the growth, trichome morphology such as spiral number and algal filament length, and harvesting efficiency of A. platensis were investigated. Cells aggregated into large cell flocs after the addition of PA in the medium, and algal spiral number and filament length increased. UV-vis spectra indicated the interactions between PA and algal cells. Adding PA at stationary growth phase is a good strategy for harvesting, since no adverse effect to biomass growth and harvesting efficiency. Harvesting efficiency of 95.69% at 0.5% (v/v) PA was superior to other conventional harvesting methodologies.  相似文献   

6.
Present study aims to optimize the production of starch and total carbohydrates from Arthrospira platensis. Growing concerns toward unprecedented environmental issues associated with plastic pollution has created a tremendous impetus to develop new biomaterials for the production of bioplastic. Starch-based biopolymers from algae serve as sustainable feedstock for thermoplastic starch production due to their abundant availability and low cost. A. platensis was cultivated in Zarrouk's medium at 32 ± 1°C and exposed to red light with a photoperiod of 12:12 hr light/dark. Growth kinetics studies showed that the maximum specific growth rate (μmax) obtained was 0.059 day−1 with the doubling time (td) of 11.748 days. Subsequently, Zarrouk's medium with different concentrations of sulfur, phosphorus and nitrogen was prepared to establish the nutrient-limiting conditions to enhance the accumulation of starch and total carbohydrates. In this study, the highest starch accumulated was 6.406 ± 0.622 mg L−1 under optimized phosphorus limitation (0.025 g L−1) conditions. Nitrogen limitation (0.250 g L−1) results demonstrated significant influenced (p < 0.05) on total carbohydrates (67.573 ± 2.893 mg L−1) accumulation in A. platensis. The starch accumulation in A. platensis was significantly affected (p < 0.05) by phosphorus limitation (0.0025 g L−1). Subsequently, the optimized phosphorus concentration was coupled with mixotrophic cultivation to further enhance the starch accumulation. The results obtained indicated that, the starch (11.426 ± 0.314 mg L−1) and carbohydrates (43.053 ± 2.986 mg L−1) concentration obtained was significantly high (p < 0.05) under mixotrophic cultivation. Therefore, it shown that nutrient limitation and mixotrophic cultivation are viable strategies to enhance the accumulation of starch and total carbohydrates in A. platensis.  相似文献   

7.
A mutant of Arthrospira platensis PCC 9108, strain M9108, obtained by mutagenesis with UV treatment, was able to mixotrophically grow in an SOT medium containing 40 g of glucose/l. The biomass and specific growth rate of strain M9108 (4.10 g/l and 0.70/d) were 1.9-fold and 1.4-fold higher, respectively, than those of the wild type (2.21 g/l and 0.58/d) under mixotrophic culture condition. In addition, when compared with the wild type, the content of gamma- linolenic acid (GLA) in the mutant was increased when glucose concentration was increased. Compared with the wild type, the GLA content of the mutant was 2-fold higher in autotrophic culture and about 3-fold higher in mixotrophic culture. Thus, the mutant appears to possess more efficient facility to assimilate and metabolize glucose and to produce more GLA than its wild-type strain.  相似文献   

8.
The distribution of the two photosystems, PSI and PSII, in grana and stroma lamellae of the chloroplast membranes is not uniform. PSII are mainly concentrated in grana and PSI in stroma thylakoids. The dynamics and factors controlling the spatial segregation of PSI and PSII are generally not well understood, and here we address the segregation of photosystems in thylakoid membranes by means of a molecular dynamics method. The lateral segregation of photosystems was studied assuming a model comprising a two-dimensional (in-plane), two-component, many-body system with periodic boundary conditions and competing interactions between the photosystems in the thylakoid membrane. PSI and PSII are represented by particles with different values of negative charge. The pair interactions between particles include a screened Coulomb repulsive part and an exponentially decaying attractive part. The modeling results suggest a complicated phase behavior of the system, including quasi-crystalline phase of randomly distributed complexes of PSII and PSI at low ionic screening, well defined clustered state of segregated complexes at high screening, and in addition, an intermediate agglomerate phase where the photosystems tend to aggregate together without segregation. The calculations demonstrated that the ordering of photosystems within the membrane was the result of interplay between electrostatic and lipid-mediated interactions. At some values of the model parameters the segregation can be represented visually as well as by analyzing the correlation functions of the configuration.  相似文献   

9.
This study describes the response of Arthrospira platensis to a variety of temperature conditions as reflected in variations of photosynthetic parameters, pigmentation, and biomass productivity in indoor photobioreactor (PBR) cultivations. These experiments are designed to better understand the impact of temperature, seasonal variations, and acclimation effects on outdoor biomass production. The irradiance level and temperature range (20–39°C) are chosen to enable modeling of semi-continuous operation of large-scale outdoor PBR deployments. Overall, the cultivations are quite stable with some pigment-related instabilities after prolonged high-temperature exposure. Changes in productivity with temperature, as reflected in measured photosynthetic parameters, are immediate and mainly attributable to the temperature dependence of the photosaturation parameter, a secondary factor being variation in pigment content on a longer time scale corresponding to turnover of the culture population. Though pigment changes are not accompanied by significant changes in productivity, prolonged exposure at 35°C and above yields a clear degradation in performance. Productivities in a semi-continuous operation are quantitatively reproduced with a productivity model incorporating photosynthetic parameters measured herein. This study confirms the importance of temperature for biomass and pigment production in Arthrospira cultivations and provides a basis for risk assessments related to temperature mitigation for large-scale outdoor cultivations.  相似文献   

10.
During October to December 2003 we carried out experiments to assess the impact of high solar radiation levels (as normally occurring in a tropical region of Southern China) on the cyanobacteria Nostoc sphaeroides and Arthrospira (Spirulina) platensis. Two types of experiments were done: a) Short-term (i.e., 20 min) oxygen production of samples exposed to two radiation treatments (i.e., PAR+UVR—280–700 nm, and PAR only—400–700 nm, PAB and P treatments, respectively), and b) Long-term (i.e., 12 days) evaluation of photosynthetic quantum yield (Y) of samples exposed to three radiation treatments (i.e., PAB; PA (PAR+UV-A, 320–700 nm) and P treatments, respectively). N. sphaeroides was resistant to UVR, with no significant differences (P>0.05) in oxygen production within 20 min of exposure, but with a slight inhibition of Y within hours. A fast recovery of Y was observed after one day even in samples exposed to full solar radiation. A. platensis, on the other hand, was very sensitive to solar radiation (mainly to UV-B), as determined by oxygen production and Y measurements. A. platensis had a circadian rhythm of photosynthetic inhibition, and during the first six days of exposure to solar radiation, it varied between 80 and 100% at local noon, but cells recovered significantly during afternoon hours. There was a significant decrease in photosynthetic inhibition after the first week of exposure with values less than 50% at local noon in samples receiving full solar radiation. Samples exposed to PA and P treatments recovered much faster (within 2–3 days), and there were no significant differences in Y between the three radiation treatments when irradiance was low (late afternoon to early morning). Long-term acclimation seems to be important in A. platensis to cope with high UVR levels however, it is not attained through the synthesis of UV-absorbing compounds but it seems to be mostly related to adaptive morphological changes.  相似文献   

11.
Journal of Applied Phycology - Arthrospira platensis is a cyanobacterium known for its widespread use as nutraceutical and food additive. Besides a high protein content, this microorganism is also...  相似文献   

12.
Urea has been considered as a promising alternative nitrogen source for the cultivation of Arthrospira platensis if it is possible to avoid ammonia toxicity; however, this procedure can lead to periods of nitrogen shortage. This study shows that the addition of potassium nitrate, which acts as a nitrogen reservoir, to cultivations carried out with urea in a fed-batch process can increase the maximum cell concentration (X(m) ) and also cell productivity (P(X) ). Using response surface methodology, the model indicates that the estimated optimum X(m) can be achieved with 17.3 mM potassium nitrate and 8.9 mM urea. Under this condition an X(m) of 6077 ± 199 mg/L and a P(X) of 341.5 ± 19.1 mg L(-1) day(-1) were obtained.  相似文献   

13.
Uptake rates of macrominerals and trace elements were characterized in batch and continuous cultures of Spirulina platensis under photoautotropic conditions. The values of yield coefficients were determined using inductively coupled plasma emission spectroscopy (ICP-ES). Further simplifications of culture medium proved possible, mainly in the trace element solutions; concentrations of some elements were lowered and trace elements B, Mo, V, Cr, Ni, Co, W, and Ti were removed.  相似文献   

14.
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O2 evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.  相似文献   

15.
Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies.  相似文献   

16.
Aims: Arthrospira platensis has been studied for single‐cell protein production because of its biomass composition and its ability of growing in alternative media. This work evaluated the effects of different dilution rates (D) and urea concentrations (N0) on A. platensis continuous culture, in terms of growth, kinetic parameters, biomass composition and nitrogen removal. Methods and results: Arthrospira platensis was continuously cultivated in a glass‐made vertical column photobioreactor agitated with Rushton turbines. There were used different dilution rates (0·04–0·44 day?1) and urea concentrations (0·5 and 5 mmol l?1). With N0 = 5 mmol l?1, the maximum steady‐state biomass concentration was1415 mg l?1, achieved with D = 0·04 day?1, but the highest protein content (71·9%) was obtained by applying D = 0·12 day?1, attaining a protein productivity of 106·41 mg l?1 day?1. Nitrogen removal reached 99% on steady‐state conditions. Conclusions: The best results were achieved by applying N0 = 5 mmol l?1; however, urea led to inhibitory conditions at D 0·16 day?1, inducing the system wash‐out. The agitation afforded satisfactory mixture and did not harm the trichomes structure. Significance and Impact of the Study: These results can enhance the basis for the continuous removal of nitrogenous wastewater pollutants using cyanobacteria, with an easily assembled photobioreactor.  相似文献   

17.
Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion. The membrane configuration impacted the efficiency of the enzyme-immobilization as well as the biocatalytic-membrane reaction, and the “sandwich mode”, with an extra polypropylene support above the membrane skin layer, worked best due to its high flux and stable conversion. Among the membranes, a GR51PP polysulphone membrane allowed for the highest flux during the reaction with the enzyme-immobilized membrane. At the same time, the lowest enzyme loading and low reaction stability were achieved for this membrane. Satisfactory enzyme loadings, stable conversions, but low flux rates were obtained for the PLTK and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24 h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations for the different results. The work confirms that fouling-induced enzyme immobilization is a promising option for enhancing biocatalytic productivity, and highlights the significance of the membrane type and configuration for optimal performance.  相似文献   

18.
Photosynthetic and respiratory electron transport and their interplay with ion transport have been studied in Arthrospira platensis, a filamentous alkaliphilic cyanobacterium living in hypersaline lakes. As typical for alkaliphiles, A. platensis apparently does not maintain an outward positive pH gradient at its plasma membrane. Accordingly, sodium extrusion occurs via an ATP-dependent primary sodium pump, in contrast to the Na+/H+ antiport in most cyanobacteria. A. platensis is strongly dependent on sodium/bicarbonate symport for the uptake of inorganic carbon. Sodium extrusion in the presence of the Photosystem II inhibitor diuron indicates that a significant amount of ATP is supplied by cyclic electron transport around Photosystem I, the content of which in A. platensis is exceptionally high. Plastoquinol is oxidized by two parallel pathways, via the cytochrome b 6 f complex and a putative cytochrome bd complex, both of which are active in the light and in the dark. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O(2) evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.  相似文献   

20.
Journal of Applied Phycology - Valorization of industrial waste as an alternative carbon source for microalgae mixotrophic cultivation and co-production of high-value compounds are strategies to...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号