首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Liver plasma membranes prepared from genetically diabetic (db/db) mice expressed levels of Gi α-2, Gi α-3 and G-protein β-subunits that were reduced by some 75, 63 and 73% compared with levels seen in membranes from lean animals. In contrast, there were no significant differences in the expression of the 42 and 45 kDa forms of Gs α-subunits. Pertussis toxin-catalysed ADP-ribosylation of membranes from lean animals identified a single 41 kDa band whose labelling was reduced by some 86% in membranes from diabetic animals. Cholera toxin-catalysed ADP-ribosylation identified two forms of Gs α-subunits whose labelling was about 4-fold greater in membranes from diabetic animals compared with those from lean animals. Maximal stimulations of adenylyl cyclase activity by forskolin (100 μM), GTP (100 μM), p[NH]ppG (100 μM), NaF (10 mM) and glucagon (10 μM) were similar in membranes from lean and diabetic animals, whereas stimulation by isoprenaline (100 μM) was lower by about 22%. Lower concentrations (EC50-60 nM) of p[NH]ppG were needed to activate adenylyl cyclase in membranes from diabetic animals compared to those from lean animals (EC50-158 nM). As well as causing activation, p[NH]ppG was capable of eliciting a pertussis toxin-sensitive inhibitory effect upon forskolin-stimulated adenylyl cyclase activity in membranes from both lean and diabetic animals. However, maximal inhibition of adenylyl cyclase activity in membranes from diabetic animals was reduced to around 60% of that found using membranes from lean animals. Pertussis toxin-treatment in vivo enhanced maximal stimulation of adenylyl cyclase by glucagon, isoprenaline and p[NH]ppG through a process suggested to be mediated by the abolition of functional Gi activity. The lower levels of expression of G-protein β-subunits, in membranes from diabetic compared with lean animals, is suggested to perturb the equilibria between holomeric and dissociated G-protein subunits. We suggest that this may explain both the enhanced sensitivity of adenylyl cyclase to stimulation by p[NH]ppG in membranes from diabetic animals and the altered ability of pertussis and cholera toxins to catalyse the ADP-ribosylation of G-proteins in membranes from these two animals.  相似文献   

2.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

3.
Vascular smooth muscle cell membranes from prehypertensive rats of the Milan hypertensive strain (MHS) were used to examine adenylyl cyclase activity and its regulation by guanine nucleotide regulatory proteins (G-proteins). Basal adenylyl cyclase activity was similar in MHS and Milan normontensive strain (MNS) membranes. Forsokolin (10?4 M) produced a significantly greater stimulatory response in MHS membranes, but this was not observed with NaF (10?2 M). Isoporterenol (10?4 M) caused a significantly decreased stimulation of adenylyl cyclase activity in MHS membranes, while prostaglandin E1 (10?5 M) produced similar responses in the two strains. Gi function and GTP responses, as observed by biphasic effects of GTP on isoproterenol-stimulated membranes, were similar in both strains. The levels of Gi2α and Gqα/G11α were similar in the two strains, while the levels of Gsα (44 and 42 kDa forms) and the β-subunit were significantly reduced by ~20% in MHS membranes. The α-subunit of Gi3 was dramatically reduced by ~80% in MHS membranes. The affinities of β-adrenergic receptors for the antagonist, cyanophindolol, were similar in the two strains; however, the number of β-adrenoceptors was substantially reduced in MHS membranes. These findings may be of relevance to altered vascular reactivity and transmembrane ion distribution observed in the MHS.  相似文献   

4.
G proteins are heterotrimeric GTPases that play a key role in signal transduction. The α subunit of Gs bound to GTP is capable of activating adenylyl cyclase. The amino acid sequences derived from two X. laevis cDNA clones that apparently code for Gsα subunits are 92% identical to those found in the short form of human Gsα. Despite this high homology, the X. laevis Gsα clones expressed in vitro, yielded a protein that are not able to activate the adenylyl cyclase present in S49 cyc membranes in contrast with human Gsα similarly expressed. This finding suggested that the few amino acid substitutions found in the amphibian subunit are important in defining the functionality of the human Gsα. The construction of chimeras composed of different fractions of the cDNAs of the two species was adopted as an approach in determining the regions of the molecule important in its functionality in this assay. Four pairs of chimeras were constructed using reciprocal combinations of the cDNAs coding for human and Xenopus Gsα. These eight constructs were expressed in vitro and equivalent amounts of the resulting proteins were assayed in the activation of adenylyl cyclase with GTPγs and isoproterenol. The results obtained here clearly indicate that the Gα sequence that extends from amino acid 70 to 140, is important for the functionality of human Gsα in activating adenylyl cyclase.  相似文献   

5.
Abstract: Sodium is generally required for optimal inhibition of adenylyl cyclase by Gl/o-coupled receptors. Canna-binoids bind to specific receptors that act like other members of the Gl/o-coupled receptor superfamily to inhibit adenylyl cyclase. However, assay of cannabinoid inhibition of adenylyl cyclase in rat cerebellar membranes revealed that concentrations of NaCI ranging from 0 to 150 mM had no effect on agonist inhibition. This lack of effect of sodium was not unique to cannabinoid receptors, because the same results were observed using baclofen as an agonist for GABAB receptors in cerebellar membranes. The lack of sodium dependence was region-specific, because assay of cannabinoid and opioid inhibition of adenylyl cyclase in striatum revealed an expected sodium dependence, with 50 mM NaCI providing maximal inhibition levels by both sets of agonists. This difference in sodium requirements between these two regions was maintained at the G protein level, because agonist-stimulated low Km GTPase activity was maximal at 50 mM NaCI in striatal membranes, but was maximal in the absence of NaCI in cerebellar membranes. Assay of [3H]WIN 55212–2 binding in cerebellar membranes revealed that the binding of this labeled agonist was sensitive to sodium and guanine nucleotides like other Gl/o-coupled receptors, because both NaCI and the nonhydrolyzable GTP analogue Gpp(NH)p significantly inhibited binding. These results suggest that differences in receptor-G protein coupling exist for cannabinoid receptors between these two brain regions.  相似文献   

6.
Abstract: It has been reported that antidepressant treatment in rats results in a significant increase of Gs-mediated stimulation of adenylyl cyclase and this effect correlates well with the clinical therapeutic response. This increased activity occurs despite a down-regulation of several receptors linked normally to the stimulation of that enzyme. To distinguish between these effects and to determine whether presynaptic components of the cell are required, C6 glioma cells were treated with antidepressants. Tricyclic (amitriptyline and desipramine) or atypical (iprindole) antidepressant exposure to C6 cells for 5 days significantly increased guanylyl-5′-imidodiphosphate [Gpp(NH)p]-stimulated adenylyl cyclase activity in membrane preparations in a manner similar to that seen for rat brain membranes after 21-day treatment. This effect was drug dose and exposure time dependent. Nevertheless, stimulation of adenylyl cyclase by isoproterenol was decreased after antidepressant treatment. By comparison, the antidepressant-induced β-receptor desensitization occurred earlier than the enhancement of Gpp(NH)p-activated adenylyl cyclase, and extensive desensitization of β receptors by isoproterenol treatment did not enhance the Gpp(NH)p-stimulated adenylyl cyclase activity. These results indicated that the antidepressant has a direct effect on cell signaling and this enhanced Gpp(NH)p-stimulated adenylyl cyclase activity is not correlated with desensitization of β-adrenergic receptor stimulated adenylyl cyclase. These data contribute to the suggestion that G proteins (especially Gs) are the target of antidepressant actions. Immunoblotting showed that neither the number of G protein subunits (αs, αi, αo, and β) nor their association with the plasma membrane was changed after antidepressant treatment. Thus, these results are consistent with the hypothesis that chronic antidepressant treatment acts directly at the postsynaptic membrane to increase the coupling between Gs and adenylyl cyclase.  相似文献   

7.
Adipocyte membranes from diabetic (db/db) animals showed marked elevations in the levels of α-subunits for Gi-1 which were almost twice those in membranes from their normal, lean littermates. In contrast, no apparent differences were noted for levels of the α-subunits of Gi-2 and Gi-3, and 42 and 45 kDa forms of Gs and for G-protein β-subunits. Adenylate cyclase specific activity was similar in membranes from both normal and diabetic animals under basal conditions and also when stimulated by optimal concentrations of either NaF or forsckolin. In contrast, the ability of isoprenaline, glucagon and secretin to stimulate adenylate cyclase activity was greater in membranes from normal animals compared with membranes from diabetic animals. Receptor-mediated inhibition of adenylate cyclase, as assessed using PGE1 and nicotinate, was similar using membranes from both sources, but PIA (phenylisopropyladenosine) was a slightly more effective inhibitor in membranes from diabetic animals. A doubling in the expression of G1-1 thus appears to have little discernible effect upon the inhibitory regulation of adenylate cyclase.  相似文献   

8.
Abstract

The guanine nucleotide regulatory protein, Gs, mediates transmembrane signaling by coupling membrane receptors to the stimulation of adenylyl cyclase activity. The full length coding sequences for the Mp 42-45,000, short form (S), and M1= 46-52,000, long form (L), of the a-subunits of rat Gs were placed in yeast expression vectors under the regulatory control of the copper-inducible CUP 1 promoter and transformed into Saccharomvces cerevisiae. In the presence of 100 pM CuSOq, the transformed yeast expressed Gs-a mRNAs and proteins. In reconstitution experiments, rat Gs-a(S and L), solubilized from yeast membranes with 1% cholate, conferred NaF-, (-)isoproterenol, and guanine nudeotidedependent sensitivity to adenylyl cyclase catalytic units in S49 lymphoma cyc- cell membranes, which are devoid of endogenous Gs-a. Gs-a(S) demonstrated twice the activity of Gs-a(L) in reconstitution assays of fluoride-stimulated adenylyl cyclase activity. Comparison of Gs-a(S) expressed in yeast with Gs purified from rabbit liver or human erythrocytes showed that the crude recombinant protein was fully competent in reconstituting NaF-stimulated adenylyl cyclase activity, but was only 2-5% as potent as puriiied G,. Addition of bovine brain py subunits during reconstitution enhanced all parameters of adenylyl cyclase activity for Gq-a(S and L) obtained from yeaa. In contrast, transducin py only enhanced agonist-stimulated adenylyl cyclase activity for Gs-a(S and L) following reconstitution. These results demonstrate that the expression of functional mammalian Gs-a subunits in yeast may be useful for their biochemical characterization.  相似文献   

9.
1. Antidepressants have been used clinically for many years; however, the neurochemical mechanism for their therapeutic effect has not been clarified yet. Recent reports indicate that chronic antidepressant treatment directly affects the postsynaptic membrane to increase the coupling between the stimulatory GTP-binding (G) protein, Gs, and adenylyl cyclase. Tubulin, a cytoskeletal element, is involved in the stimulatory and inhibitory regulation of adenylyl cyclase in rat cerebral cortex via direct transfer of GTP to G proteins. In this study, we investigated whether the functional change of the adenylyl cyclase system caused by chronic antidepressant treatment involves an alteration of tubulin function in the regulation of adenylyl cyclase activity.2. Male Sprague–Dawley rats were treated once daily with amitriptyline or saline by intraperitoneal injection (10 mg/kg) for 21 days, and their cerebral cortex membranes and GppNHp-liganded tubulin (tubulin-GppNHp) were prepared for what.3. GppNHp-stimulated adenylyl cyclase activity in cortex membranes from amitriptyline-treated rats was significantly higher than that in control membranes. Furthermore, tubulin–GppNHp prepared from amitriptyline-treated rats was more potent than that from control rats in the stimulation of adenylyl cyclase activity in the cortex membranes of the controls. However, there was no significant difference in manganese-stimulated adenylyl cyclase activity between control and amitriptyline-treated rats.4. The present results suggest that chronic antidepressant treatment enhances not only the coupling between Gs and the catalytic subunit of adenylyl cyclase but also tubulin interaction with Gs in the cerebral cortex of the rat.  相似文献   

10.
Abstract: Opioid receptors are multifunctional receptors that utilize G proteins for signal transduction. The cloned δ-opioid receptor has been shown recently to stimulate phospholipase C, as well as to inhibit or stimulate different isoforms of adenylyl cyclase. By using transient transfection studies, the ability of the cloned μ-opioid receptor to stimulate type II adenylyl cyclase was examined. Coexpression of the μ-opioid receptor with type II adenylyl cyclase in human embryonic kidney 293 cells allowed the μ-selective agonist, [d -Ala2, N-Me-Phe4,Gly5-ol]enkephalin, to stimulate cyclic AMP accumulation in a dose-dependent manner. The opioid-induced stimulation of type II adenylyl cyclase was mediated via pertussis toxin-sensitive Gi proteins, because it was abolished completely by the toxin. Possible coupling between the μ-opioid receptor and various G protein α subunits was examined in the type II adenylyl cyclase system. The opioid-induced response became pertussis toxin-insensitive and was enhanced significantly upon co-expression with the α subunit of Gz, whereas those of Gq, G12, or G13 inhibited the opioid response. When pertussis toxin-sensitive G protein α subunits were tested under similar conditions, all three forms of αi and both forms of αo were able to enhance the opioid response to various extents. Enhancement of type II adenylyl cyclase responses by the co-expression of α subunits reflects a functional coupling between α subunits and the μ-opioid receptor, because such potentiations were not observed with the constitutively activated α subunit mutants. These results indicate that the μ-opioid receptor can couple to Gi1–3, Go1–2, and Gz, but not to Gs, Gq, G12, G13, or Gt.  相似文献   

11.
Mouse neuroblastoma x rat glioma hybrid NG108-15 and mouse neuroblastoma x embryonic hamster brain NCB20 cells were transfected with a construct containing a human 2 adrenoceptor cDNA under the control of the actin promoter. Clones were selected on the basis of resistance to geneticin sulphate and those expressing a range of levels of the receptor expanded for further study. Membranes from a clone of NG108-15 cells expressing high levels of the receptor (N22) but not one expressing only low levels of the receptor (N17) exhibited a markedly elevated adenylyl cyclase activity when measured in the presence of Mg2+ compared to wild type cells. This was not due to elevated levels of the adenylyl cyclase catalytic moiety however as there was no difference in these membranes when the adenylyl cyclase activity was measured in the presence of Mn2+. The elevated basal activity was partially reversed by addition of the -adrenoceptor antagonist propranolol. Agonist activation of N22 but not N17 cells led to a large selective down-regulation of cellular Gs levels which was independent of the generation of cyclic AMP. Isoprenaline stimulation of adenylyl cyclase activity and of the specific high affinity binding of [3H] forskolin was achieved with substantially greater potency (some 30 fold) in N22 cell membranes than in N17. By contrast agonist activation of the endogenously expressed IP prostanoid receptor caused stimulation of adenylyl cyclase and stimulation of high affinity [3H] forskolin binding which was equipotent in each of N22, N17 and wild type NG108-15 cells. Agonist activation of the IP prostanoid receptor caused an equivalent degree of Gs down-regulation in each cell type. Expression of an epitope tagged variant of Gs in NG108-15 cells resulted in prostanoid agonist-induced down-regulation of this polypeptide in a manner indistinguishable from that of wild type Gs. Isolation of clones of NCB20 cells expressing high levels of the 2 adrenoceptor also resulted in a specific agonist-induced down-regulation of Gs.  相似文献   

12.
Lipolysis and adenylyl cyclase (AC) activation in response to β-adrenergic agents are abnormally low in white epididymal adipose tissue (WAT) of the ob/ob mouse. The abundance of G-proteins (Gsα and Giα) linked to AC is also abnormally low. By contrast, β-adrenergic receptor (β-AR) levels were previously found to be normal in WAT and elevated in liver. The relative importance of various forms of the β-AR in mouse WAT was reassessed in view of the discovery of the β3-AR. The results show that (1) the β3-AR is mainly responsible for AC activation in lean-mouse WAT; (2) the β3-AR is only partly responsible for AC activation in obese mouse WAT; and (3) GTP modulates β3—-but not β1—-or β2-AR activation of AC in a biphasic manner. Therefore, the β3-AR appears responsible for the well-known bimodal effect of GTP on β-adrenergic receptor-mediated AC activity in WAT.  相似文献   

13.
Abstract: Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH- SY5Y cells: Gaα, Giα1, Gjα2, Gcα, Gzα, and Gβ. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 μmol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of μ-opioid binding sites, the levels of the inhibitory G proteins Giα1 and Gjα1 were found to be significantly increased. This coordinate up-reg- ulation is accompanied by functional changes in μ-opioid receptor-stimulated Iow-Km GTPase, μ-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5′-(βγ-imido)triphosphate [Gpp(NH)p; 10 nmol/ L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prosta- glandin E1 (PGE1) receptors and Gsα, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1 stimulated adenylate cyclase activity, but significantly reduced amounts of Gzα were found. This down- regulation is paralleled by a decrease in the stimulatory activity of Gzα as assessed in S49 cyc- reconstitution assays. However, the reduction in Gaα levels had no effect on both intrinsic and receptor-independent-activated [Gpp(NH)p or forskolin; 100 μtmol/L each] adenylate cyclase, suggesting that the amount of Gzα is in excess over the functional capacity of adenylate cyclase in SH-SY5Y cell membranes. Additional quantitative changes were found for Gzα, Gcα, and Gβ subunits. In contrast, neuronal differentiation in the presence of 12-O-tetradecanoylphor- bol 13-acetate (16 nmol/L; 6 days) failed to affect G protein abundance. Our results provide evidence for a specific RA effect on the abundance of distinct G protein sub- units in human SH-SY5Y neuroblastoma cells. These alterations might contribute to functional changes in transmembrane signaling pathways associated with RA-in- duced neuronal differentiation of the cells.  相似文献   

14.
Abstract: Exposure of human SK-N-MC neurotumor cells to 4β-phorbol 12-myristate 13-acetate (PMA) increased isoproterenol stimulation of cyclic AMP levels by severalfold. This potentiation was blocked by inhibitors of protein kinase C (PKC) and did not occur in cells in which PKC had been down-regulated. PMA treatment also enhanced the stimulation by dopamine, cholera toxin, and forskolin. Thus, the effect of PMA on the adenylylcyclase system was postreceptor and involved either the guanine nucleotide binding regulatory (G) proteins or the cyclase itself. As PMA treatment did not impair the inhibition of isoproterenol stimulation by neuropeptide Y, an involvement of the inhibitory G protein Gi was unlikely. Cholate extracts of membranes from control and PMA-treated cells were equally effective in the reconstitution of adenylylcyclase activity in S49 cyc? membranes, which lack the stimulatory G protein subunit G; thus, Gs did not appear to be the target of PMA action. Membranes from PMA-treated cells exhibited increased adenylylcyclase activity to all stimulators including Mn2+ and Mn2+ plus forskolin. In addition, activity was increased when control membranes were incubated with ATP and purified PKC from rat brain. This is consistent with a direct effect of PKC on the adenylylcyclase catalyst in SK-N-MC cells. PMA treatment also resulted in a shift to less sensitivity in the Kact for isoproterenol but not for dopamine or CGP-12177 (a β3-adrenergic agonist) stimulation. Thus, the β1 but not the D1 or β3 receptors were being desensitized by PKC activation. Analysis of SK-N-MC cells by western blotting with antibodies against different PKC isozymes revealed that both the α and ζ isozymes were present in these cells. Whereas PKC-α was activated and translocated from cytosol to membrane by phorbol esters, the ζ isozyme was not. Thus, PKC-α, which has been implicated in desensitization in other cell lines, also appears to potentiate adenylylcyclase activity.  相似文献   

15.
It is generally assumed that antagonists of Gs‐coupled receptors do not activate cAMP signalling, because they do not stimulate cAMP production via Gs‐protein/adenylyl cyclase activation. Here, we report a new signalling pathway whereby antagonists of β1‐adrenergic receptors (β1ARs) increase cAMP levels locally without stimulating cAMP production directly. Binding of antagonists causes dissociation of a preformed complex between β1ARs and Type‐4 cyclic nucleotide phosphodiesterases (PDE4s). This reduces the local concentration of cAMP‐hydrolytic activity, thereby increasing submembrane cAMP and PKA activity. Our study identifies receptor/PDE4 complex dissociation as a novel mechanism of antagonist action that contributes to the pharmacological properties of β1AR antagonists and might be shared by other receptor subtypes.  相似文献   

16.
Dimethyl sulfoxide (DMSO)-induced erythroid differentiation of Friend mouse erythroleukemia (MEL) cells is associated with a marked transient modulation of catecholamine sensitivity. Within 24 h after induction and well before the onset of hemoglobin synthesis, we observed a 3-fold increase in β-receptor density and a more than 10-fold increase in receptor-coupled cAMP formation. During the following 4 days, in parallel with the development of normoblast-like cells, receptor numbers returned to preinduction levels while catecholamine-dependent cAMP formation remained significantly elevated. Simultaneously, the apparent potency of the β-adrenoceptor agonist isoprenaline increased 10-fold. Improved receptor—cyclase coupling is probably due to a major shift in the expression of Gi and Gs regulatory proteins. Bacterial toxin-mediated ADP-ribosylation of membrane proteins suggests that the dominating species in native cells is Gi (G:G = 1:7). By contrast, Gs predominates in differentiated cells (G:G = 1.8:1). Receptor-independent forskolin-stimulated cAMP formation showed a pronounced, albeit transient, decrease during differentiation. We suggest that these changes in cellular cAMP responses may be important for transient positive or negative cooperative interactions between hormones and growth factors in the course of erythroid cell development.  相似文献   

17.
HGFu and Ob17 are cell lines derived from adipose tissue of lean (+/?) and ob/ob mice, respectively. Neither adenylyl cyclase activity nor G protein abundance and subcellular distribution have been assessed previously in these cells. Cyclase activity was low and resistant to catecholamine stimulation in both cell lines. However, the enzyme could be stimulated to high levels by forskolin and Mn2+. Gsα (largely the long isoform), Giα2, and Gβ were the major G protein subunits identified. The levels of G protein mRNA expression were similar in both cell lines and, unlike actin expression, did not change as a result of differentiation. Immunoblotting and ADP-ribosylation of the G peptides corroborated these results. Assessment of the subcellular localization of the subunits by indirect epifluorescence and scanning confocal microscopy showed that each of the subunits had a characteristic subcellular pattern. Gsα showed vesicular cytoplasmic and nuclear staining; Giα2 colocalized with actin stress fibers and disruption of these structures altered the distribution of Giα2; β subunits showed some colocalization with the stress fibers as well as a cytoplasmic vesicular and nuclear pattern. As a result of differentiation, there was reorganization of the actin, together with the Giα2 and β fibrous patterns. Both cell lines showed similar modifications. The induction of differentiation in these cells is therefore not associated with changes in adenylyl cyclase activity nor of the abundance of G-protein subunits, although reorganization of some of these subunits does accompany actin reorganization.  相似文献   

18.
Protein composition of membrane domains prepared by three different procedures (mechanical homogenization, alkaline treatment with 1 M Na2CO3[pH 11.0], or extraction with nonionic detergent Triton X-100), and isolated from the bulk of plasma membranes by flotation on equilibrium sucrose density gradients, was analyzed by two-dimensional (2D) electrophoresis and compared in preparations from control (quiescent) and agonist-stimulated human embryonic kidney cells (HEK)293 or S49 cells. HEK293 cells (clone e2m11) stably expressing high levels of thyrotropin-releasing hormone receptor and G11α protein were stimulated by thyrotropin-releasing hormone and S49 lymphoma cells by the β-adrenergic receptor agonist isoprenaline. Whereas sustained exposure (16h) of both cell lines to the appropriate hormones led to substantial cellular redistribution and downregulation of the cognate G proteins (Gqα/G11α and Gsα, respectively), the distribution and levels of nonstimulated Gi proteins remained unchanged. The 2D electrophoretic analysis of membrane domains distinguished approx 150–170 major proteins in these structures and none of these proteins was significantly altered by prolonged agonist stimulation. Furthermore, specific immunochemical determination of a number of plasma membrane markers, including transmembrane and glycosyl-phosphatidylinositol-anchored peripheral proteins, confirmed that their detergent-extractability/solubility was not influenced by hormone treatment. Collectively, our present data indicate that sustained hormone stimulation of target cells does not alter the basic protein composition of membrane domain/raft compartments of the plasma membrane in spite of marked changes proceeding in a given signaling cascade.  相似文献   

19.
We have investigated the possibility that adenylyl cyclase (AC) activity and membrane protein levels of the α-subunits of the stimulatory and inhibitory G-proteins of AC (Gsα and Gi−2α) in cultured prolactin-producing rat pituitary adenoma cells (GH3 cells) are modulated by phospholipase C (PLC)-generated second messengers. Pretreatment of cells (6–48 h) with ionomycin (1 μM) or 1-oleoyl-2-acetylglycerol (OAG; 1μM) showed that ionomycin regulated Gsα levels in a time-dependent, biphasic manner; a two-fold increase followed a 40% initial reduction, while OAG lowered Gsα levels by more than 50% at all time-points. Gi−2α levels remained unchanged by both pretreatments. OAG, but not ionomycin, increased basal AC activity without increasing enzyme protein levels. Alterations in AC responsiveness to peptide hormones (e.g. thyroliberin and vasoactive intestinal peptide) correlated to membrane Gs protein α-subunit content. These results demonstrate the involvement of G-protein translation regulation as one mechanism of ‘cross-talk’ between the PLC- and AC-dependent signalling pathways.  相似文献   

20.
Abstract

The β2-adrenergic receptor (β2AR) couples to Gs, activating adenylyl cyclase (AC) and increasing cAMP. Such signaling undergoes desensitization with continued agonist exposure. β2AR also couple to Gi after receptor phosphorylation by the cAMP dependent protein kinase A, but the efficiency of such coupling is not known. Given the PKA dependence of β2AR-Gi coupling, we explored whether this may be a mechanism of agonist-promoted desensitization. HEK293 cells were transfected to express β2AR or β2AR and Giα2, and then treated with vehicle or the agonist isoproterenol to evoke agonist-promoted β2AR desensitization. Membrane AC activities showed that Giα2 overexpression decreased basal levels, but the fold-stimulation of the AC over basal by agonist was not altered. However, with treatment of the cells with isoproterenol prior to membrane preparation, a marked decrease in agonist-stimulated AC was observed with the cells overexpressing Giα2. in the absence of such overexpression, β2AR desensitization was 23 ± 7%, while with 5-fold Giα2 overexpression desensitization was 58 ± 5% (p<0.01, n=4). the effect of Gi on desensitization was receptor-specific, in that forskolin responses were not altered by Giα2 overexpression. Thus, acquired β2AR coupling to Gi is an important mechanism of agonist-promoted desensitization, and pathologic conditions that increase Gi levels contribute to β2AR dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号