首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequencing of the genomes of Mycobacterium tuberculosis H37Rv and Streptomyces coelicolor A3(2) identified putative genes for an NAD(+)-dependent DNA ligase. We have cloned both open reading frames and overexpressed the protein products in Escherichia coli. In vitro biochemical assays confirm that each of these proteins encodes a functional DNA ligase that uses NAD(+) as its cofactor. Expression of either protein is able to complement E. coli GR501, which carries a temperature-sensitive mutation in ligA. Thus, in vitro and in vivo analyses confirm predictions that ligA genes from M. tuberculosis and S. coelicolor are NAD(+)-dependent DNA ligases.  相似文献   

2.
3.
4.
Li YF  Bao WG 《FEMS yeast research》2007,7(5):657-664
NAD holds a key position in metabolism and cellular regulatory events as a major redox carrier and a signalling molecule. NAD biosynthesis pathways have been reconstructed and compared in seven yeast species with completely sequenced genomes, including Saccharomyces cerevisiae, Kluyveromyces lactis, Candida glabrata, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and Schizosaccharomyces pombe. Both amino acid and nucleotide sequence similarity analysis in silico indicated that de novo NAD biosynthesis might not exist in K. lactis, C. glabrata and Schiz. pombe, while other species have the kynurenine pathway. It also showed that the NAD salvage pathway via nicotinic acid and nicotinic acid mononucleotide is conserved in all of these yeasts. Deletion of KlNPT1 (the gene for nicotinate phosphoribosyl-transferase) is lethal, which demonstrates that this salvage pathway, utilizing exogenous nicotinic acid, is the unique route to synthesize NAD in K. lactis. The results suggested that the basis of the variation of niacin requirements in yeasts lies in their different combinations of NAD biosynthesis pathways. The de novo pathway is absent but the salvage pathway is conserved in niacin-negative yeasts, while both pathways coexist in niacin-positive yeasts.  相似文献   

5.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.  相似文献   

6.
A previously undescribed nucleoside salvage pathway for NAD biosynthesis is defined in Salmonella typhimurium. Since neither nicotinamide nor nicotinic acid is an intermediate in this pathway, this second pyridine nucleotide salvage pathway is distinct from the classical Preiss-Handler pathway. The evidence indicates that the pathway is from nicotinamide ribonucleoside to nicotinamide mononucleotide (NMN) and then to nicotinic acid mononucleotide, followed by nicotinic acid adenine dinucleotide and NAD. The utilization of exogenous NMN for NAD biosynthesis has been reexamined, and in vivo evidence is provided that the intact NMN molecule traverses the membrane.  相似文献   

7.
8.
NAD+ is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD+ metabolism revealed that Leishmania protozoan parasites are NAD+ auxotrophs. Consequently, these parasites require assimilating NAD+ precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD+ by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that catalyses conversion of nicotinamide (NAm) to nicotinic acid (Na), and that is absent in higher eukaryotes. We present here the biochemical and functional characterizations of the Leishmania infantum nicotinamidase (LiPNC1). Generation of Lipnc1 null mutants leads to a decrease in NAD+ content, associated with a metabolic shutdown-like phenotype with an extensive lag phase of growth. Both phenotypes could be rescued by an add-back construct or by addition of exogenous Na. In addition, Lipnc1 null mutants were unable to establish a sustained infection in a murine experimental model. Altogether, these results illustrate that NAD+ homeostasis is a fundamental component of Leishmania biology and virulence, and that NAm constitutes its main NAD+ source in the mammalian host. The crystal structure of LiPNC1 we solved allows now the design of rational inhibitors against this new promising therapeutic target.  相似文献   

9.
Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.  相似文献   

10.
11.
12.
13.
Gas chromatographic/mass spectrometric methods for the measurement of the flux through the de novo pyrimidine biosynthetic pathway by quantitating the incorporation of [13C]bicarbonate and 13CO2 into the uracil nucleotide pool in L1210 tumors are reported. Simultaneous measurements of the incorporation of [13C]bicarbonate and the more commonly used [14C]bicarbonate into uridine of L1210 cells in vitro showed that the two methods were comparable. A modification of the method was applied to in vivo studies where the incorporation of 13CO2 into the uracil nucleotide pool of L1210 tumors in mice was quantitated. The measurements were used to determine changes in the flux through the de novo pyrimidine pathway in animals pretreated with known inhibitors of the pathway. A comparison of control animals with those pretreated with 6-azauridine, acivicin, and pyrazofurin resulted in mean percentage inhibitions of 87, 95, and 94%, respectively. This technique should allow investigation of the respective contributions of salvage and de novo synthesis in the formation of pyrimidines in vivo and the effects of agents designed as enzyme inhibitors of the de novo pathway.  相似文献   

14.
Sandmeier JJ  Celic I  Boeke JD  Smith JS 《Genetics》2002,160(3):877-889
The Sir2 protein is an NAD(+)-dependent protein deacetylase that is required for silencing at the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA). Mutations in the NAD(+) salvage gene NPT1 weaken all three forms of silencing and also cause a reduction in the intracellular NAD(+) level. We now show that mutation of a highly conserved histidine residue in Npt1p results in a silencing defect, indicating that Npt1p enzymatic activity is required for silencing. Deletion of another NAD(+) salvage pathway gene called PNC1 caused a less severe silencing defect and did not significantly reduce the intracellular NAD(+) concentration. However, silencing in the absence of PNC1 was completely dependent on the import of nicotinic acid from the growth medium. Deletion of a gene in the de novo NAD(+) synthesis pathway BNA1 resulted in a significant rDNA silencing defect only on medium deficient in nicotinic acid, an NAD(+) precursor. By immunofluorescence microscopy, Myc-tagged Bna1p was localized throughout the whole cell in an asynchronously growing population. In contrast, Myc-tagged Npt1p was highly concentrated in the nucleus in approximately 40% of the cells, indicating that NAD(+) salvage occurs in the nucleus in a significant fraction of cells. We propose a model in which two components of the NAD(+) salvage pathway, Pnc1p and Npt1p, function together in recycling the nuclear nicotinamide generated by Sir2p deacetylase activity back into NAD(+).  相似文献   

15.
NAD(P) is an indispensable cofactor for all organisms and its biosynthetic pathways are proposed as promising novel antibiotics targets against pathogens such as Mycobacterium tuberculosis. Six NAD(P) biosynthetic pathways were reconstructed by comparative genomics: de novo pathway (Asp), de novo pathway (Try), NmR pathway I (RNK‐dependent), NmR pathway II (RNK‐independent), Niacin salvage, and Niacin recycling. Three enzymes pivotal to the key reactions of NAD(P) biosynthesis are shared by almost all organisms, that is, NMN/NaMN adenylyltransferase (NMN/NaMNAT), NAD synthetase (NADS), and NAD kinase (NADK). They might serve as ideal broad spectrum antibiotic targets. Studies in M. tuberculosis have in part tested such hypothesis. Three regulatory factors NadR, NiaR, and NrtR, which regulate NAD biosynthesis, have been identified. M. tuberculosis NAD(P) metabolism and regulation thereof, potential drug targets and drug development are summarized in this paper. J. Cell. Physiol. 226: 331–340, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration. Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria. We addressed this problem by a combination of comparative genome analysis with verification experiments in the model system of Synechocystis sp. strain PCC 6803. A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform (http://theseed.uchicago.edu/FIG/index.cgi) helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time. Comparative analysis of operational variants implemented in this divergent group allowed us to elucidate both conserved (de novo and universal pathways) and variable (recycling and salvage pathways) aspects of this subsystem. Focused genetic and biochemical experiments confirmed several conjectures about the key aspects of this subsystem. (i) The product of the slr1691 gene, a homolog of Escherichia coli gene nadE containing an additional nitrilase-like N-terminal domain, is a NAD synthetase capable of utilizing glutamine as an amide donor in vitro. (ii) The product of the sll1916 gene, a homolog of E. coli gene nadD, is a nicotinic acid mononucleotide-preferring adenylyltransferase. This gene is essential for survival and cannot be compensated for by an alternative nicotinamide mononucleotide (NMN)-preferring adenylyltransferase (slr0787 gene). (iii) The product of the slr0788 gene is a nicotinamide-preferring phosphoribosyltransferase involved in the first step of the two-step non-deamidating utilization of nicotinamide (NMN shunt). (iv) The physiological role of this pathway encoded by a conserved gene cluster, slr0787-slr0788, is likely in the recycling of endogenously generated nicotinamide, as supported by the inability of this organism to utilize exogenously provided niacin. Positional clustering and the co-occurrence profile of the respective genes across a diverse collection of cellular organisms provide evidence of horizontal transfer events in the evolutionary history of this pathway.  相似文献   

17.
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5'-nucleotidase activity. The e (P4) protein is also shown to have NMN 5'-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed.  相似文献   

18.
张鑫  陈国强 《生物工程学报》2011,27(12):1749-1754
4-羟基丁酸(4-HB)不仅具有医学应用价值,而且是合成生物材料P3HB4HB的重要前体.在烟酰胺腺嘌呤二核苷酸(NAD)参与情况下,大肠杆菌Escherichia coli S17-1(pZL-dhaT-aldD)可以把1,4-丁二醇(1,4-BD)转化为4HB.为提高4HB产率,通过过表达烟酸磷酸核糖转移酶(PncB)和烟酰胺腺嘌呤二核苷酸合成酶(NadE)增加胞内NAD含量,从而加速1,4-BD转化反应的进行.结果表明,PncB-NadE的表达使1,4-BD转化率比对照组增加13.03%,由10g/L的1,4-BD得到4.87 g/L的4HB,单位细胞的4HB产量由1.32 g/g提高40.91%至1.86 g/g.因此PncB和NadE可用于促进1,4-BD转化为4HB.  相似文献   

19.
Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.  相似文献   

20.
Normal human lymphoblasts starved for each of several essential, but not essential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [14C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino acid or treated with a protein synthesis inhibitor. After 3 h of starvation, purine synthesis via the de novo pathway decreased 90% and via the salvage pathway decreased 60%. Cycloheximide and puromycin each reduced de novo synthesis by 96% and salvage synthesis by 72%. The decrease in purine synthesis de novo after removal of the amino acid was of first order kinetics and was fully and rapidly reversed by reconstitution with the amino acid. The synthesis of alpha-N-formylglycinamide ribonucleotide declined 97% after amino acid starvation; the synthesis of purines from 5-aminoimidazole-4-carboxamide riboside decreased 41%. The synthesis of guanylates decreased more than the synthesis of adenylates during amino acid starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号