首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
入侵植物的相对多度比群落系统发育均匀度更能解释湿地群落对不同入侵程度的响应 本地植物群落普遍受到入侵植物不同程度的入侵。然而,入侵植物相对多度与群落系统发育均匀度对不同入侵程度下湿地植物群落响应入侵的相对贡献尚不明确。此外,这种贡献是否随淹水等环境 条件的变化而变化也不清楚。为了探讨这些问题,我们选择空心莲子草(Alternanthera philoxeroides)作为入侵植物,通过改变植物群落物种组成,构建了4个不同的入侵程度,并且设置了水淹和无水淹两种处理。 改变群落入侵程度的同时改变了空心莲子草的相对多度和群落的系统发育均匀度。研究结果表明,不同的入侵程度显著影响了空心莲子草和一些本地物种的单株生物量。变异分割结果表明,无论淹水情况结果如何,空心莲子草相对多度对植物群落指标变异的贡献都大于系统发育均匀度。斯皮尔曼等级相关检验结果表明,空心莲子草的相对多度与空心莲子草和部分本地物种的单株生物量显著负相关;群落系统发育均匀度仅与少数本地种性状显著正相关。其相关强度和显著性均受特定的物种和水淹环境的影响。总之,这些研究结果表明:无论淹水情况如何,入侵植物(空心莲子草)的相对多度都比群落的系统发育均匀度更能有效地解释湿地植物群落对不同入侵程度的响应。  相似文献   

2.

Flooding regulates the amount and quality of habitat available for fish populations in river-floodplains. Although previous studies assessed fish population responses to river hydrology, the processes by which flooding affects fish abundance and catch remain unclear. Here, we investigated whether degree of flooding affects abundance and catch of Colossoma macropomum, a long-lived, overexploited fish population of the central Amazon Basin. We computed the degree of flooding corresponding to the feeding area of young-of-the-year C. macropomum as the annual magnitude of the moving littoral zone (ML). We estimated abundance of age classes one, two, and three of C. macropomum using a modeling program based on catch, fishing effort, and fish length frequency data from the principal commercial fishery. We found that flooding positively and non-linearly affected abundance of the age-one cohort but not of older age classes. ML data corresponding to a late rising water phase in which zooplankton, seeds, and fruits dominated the diet provided the strongest effect on age-one abundance. However, flooding effects on total catch were not found, likely due to catches comprising several age classes. These results provide support to existing evidence that the magnitude of the moving littoral zone regulates abundance of juvenile fish. Because the ML quantifies food and habitat availability for various other fish species, it may constitute an important control of fish abundance in these systems. Management of these fisheries may be improved by adjusting fishing effort based on hydrology. More generally, the information also serves to assess the impacts of hydrological alterations (e.g., dams) on fish recruitment.

  相似文献   

3.
Inundations of lakeshores are classical examples of how disturbance can influence community diversity and composition. As the occurrence and intensity of flooding are predicted to change dramatically as a result of climate change, predicting the consequences of such changes has become a major task for community ecology. Here we present abundance data of five species that comprise a species-poor community of high conservation value at lakeshores of Lake Constance over 17 years, during which one of the longest flood periods and the lowest water levels since 1890 occurred. We used simple regression models and increasingly sophisticated Markov chain models plus non-linear parameter estimation to put down abundance changes to direct effects of flooding on population-dynamic parameters and to indirect effects of flooding through modification of interspecific competition. We found a negative effect of flood duration on abundance changes for the non-specialist species Agrostis stolonifera and Phalaris arundinacea, but no effect on Carex acuta. The specialist species, Ranunculus reptans but not Littorella uniflora showed a positive effect of flooding. Data analysis revealed an unambiguous competitive hierarchy with the two graminoid species (C. acuta, P. arundinacea) being superior, and the habitat specialists being most sensitive to interspecific competition. We used estimated parameters to project the community dynamics under different flooding regimes. Long-term projection showed that the original community is threatened by two non-specialist species (C. acuta and P. arundinacea). Even if this forecast was influenced by various model limitations, it may indicate irreversible changes in soil fertility during the phase of high eutrophication between 1950 and 1980. Our study demonstrated that long-term abundance relevés combined with Markov modelling and predictive simulations are an important counterpart to detailed short-term studies. The combination of empirical and theoretical methods elucidates the interaction of biotic and abiotic factors in community change.  相似文献   

4.
Resource partitioning has been suggested as an important mechanism of invasion resistance. The relative importance of resource partitioning for invasion resistance, however, may depend on how species abundance is distributed in the plant community. This study had two objectives. First, we quantified the degree to which one resource, nitrogen (N), is partitioned by time, depth and chemical form among coexisting species from different functional groups by injecting 15N into soils around the study species three times during the growing season, at two soil depths and as two chemical forms. A watering treatment also was applied to evaluate the impact of soil water content on N partitioning. Second, we examined the degree to which native functional groups contributed to invasion resistance by seeding a non-native annual grass into plots where bunchgrasses, perennial forbs or annual forbs had been removed. Bunchgrasses and forbs differed in timing, depth and chemical form of N capture, and these patterns of N partitioning were not affected by soil water content. However, when we incorporated abundance (biomass) with these relative measures of N capture to determine N sequestration by the community there was no evidence suggesting that functional groups partitioned different soil N pools. Instead, dominant bunchgrasses acquired the most N from all soil N pools. Consistent with these findings we also found that bunchgrasses were the only functional group that inhibited annual grass establishment. At natural levels of species abundance, N partitioning may facilitate coexistence but may not necessarily contribute to N sequestration and invasion resistance by the plant community. This suggests that a general mechanism of invasion resistance may not be expected across systems. Instead, the key mechanism of invasion resistance within a system may depend on trait variation among coexisting species and on how species abundance is distributed in the system.  相似文献   

5.
A dramatic change in population abundance of Salvelinus leucomaenis following a catastrophic flood event was investigated. Population density declined by c . 98% after the flood in a river section affected by debris flow. The isolation of the affected population and habitat change caused by flooding may have impeded population recovery.  相似文献   

6.
Bluetongue (BT) is still present in Europe and the introduction of new serotypes from endemic areas in the African continent is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and abundance patterns might change under future (2011-2040) scenarios of climate change according to the Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period. Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage (>80%) of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near future show that there is no evidence to suggest that there will be an important increase in the distribution range of C. imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain. What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola abundance may significantly change the rate of transmission of orbiviruses.  相似文献   

7.
1. This paper explores soil seed bank composition and its contribution to the vegetation dynamics of a hydrologically variable desert floodplain in central Australia: the Cooper Creek floodplain. We investigated patterns in soil seed bank composition both temporally, in response to flooding (and drying), and spatially, with relation to flood frequency. Correlations between extant vegetation and soil seed bank composition are explored with respect to flooding. 2. A large and diverse germinable soil seed bank was detected comprising predominantly annual monocot and annual forb species. Soil seed bank composition did not change significantly in response to a major flood event but some spatial patterns were detected along a broad flood frequency gradient. Soil seed bank samples from frequently flooded sites had higher total germinable seed abundance and a greater abundance of annual monocots than less frequently flooded sites. In contrast, germinable seeds of perennial species belonging to the Poaceae family were most abundant in soil seed bank samples from rarely flooded sites. 3. Similarity between the composition of the soil seed bank and extant vegetation increased following flooding and was greatest in more frequently flooded areas of the floodplain, reflecting the establishment of annual species. The results indicate that persistent soil seed banks enable vegetation in this arid floodplain to respond to unpredictable patterns of flooding and drying.  相似文献   

8.
I assessed the short-term impact of two sequential scouring floods on the fish assemblage of a small prairie stream. I tested for changes in fish abundance, fish assemblage composition, and fish-habitat associations within individual pools and across a suite of pools following each flood. Before the second flood, 30–90% of fish were removed by seining in five of eight pools. Overall fish abundance was reduced by approximately 50% following the first flood, but effects varied widely among individual pools. Fish abundance was unaffected by the second flood, despite prior removal of a known proportion of fish, suggesting recolonization of defaunated pools during the flood. Fish assemblage similarity across the entire suite of pools was low following each flood, but varied considerably within individual pools. Defaunated pools were more similar to pre-flood assemblages than control pools, though the mechanism behind this pattern was unclear. Changes in abundance and assemblage composition were driven by interpool movement of two minnow species with the shared behavioral trait of shoaling: bigeye shiner Notropis boops and central stoneroller Campostoma anomalum. Shifts in abundance showed no upstream or downstream pattern, suggesting that flooding allowed fish to move actively among pools that are typically isolated by partial barriers (riffles). This study highlights the importance of considering species’ behavioral traits when assessing the impacts of flooding, and suggests that shoaling behavior may be useful trait for predicting fish assemblage change following flooding.  相似文献   

9.
George W. Uetz 《Oecologia》1976,22(4):373-385
Summary Species composition and diversity of a guild of wandering spiders was studied by pitfall trapping over an elevational gradient in an Illinois streamside forest. Differences in flooding frequency and their effect on the litter habitat (removal and/or compression) account for a majority of the variation in the number of species between elevations. Changes in spider communities with elevation over the flooding gradient are indicative of a transition from a harsh to a moderate environment: (1) increased abundance and species diversity; (2) decreased dominance of flood tolerant species accompanied by increased dominance of species with specialized microhabitats found in complex litter; (3) greater similarity in species composition between sites; and, (4) a change in species-abundance curves from a geometric series to a lognormal distribution. The influence of the flooding regime in regulating community structure of spiders is discussed. A multiple regression equation including flood frequency and litter depth as variables was used to predict the impact of altered flooding regimes (due to reservoir construction downstream) on spider diversity.  相似文献   

10.
水稻土是非常复杂又典型的生态系统, 分析淹水培养过程中水稻土细菌的丰度和群落结构变化规律, 可以客观反映水稻土中细菌群落结构信息, 为深入探讨水稻土细菌微生物对稻田的影响和在生态系统中的作用(营养元素转换、重金属还原与抑制甲烷生成过程等)提供实验基础与理论依据。作者采用淹水非种植水稻土微环境模式系统, 提取水稻土淹水培养1 h和1、5、10、20、30、40、60 d后的微生物总DNA, 利用Real-time PCR和PCR-DGGE (denaturing gradient gel electrophoresis)技术检测了淹水培养过程中细菌丰度与群落结构的变化。结果表明: 淹水水稻土中细菌的丰度在1 d时最大, 并在40 d到达第二个峰值, 说明淹水过程改变了细菌的丰度。基于16S rRNA基因V3区的DGGE图谱分析显示, 淹水过程中细菌的群落结构发生了演替性变化: r-策略生存的细菌仅存在于淹水初期; k-策略生存的细菌存在于淹水后期; r-和k-策略共生存的细菌存在于整个淹水过程中, 淹水后期k-策略的细菌占据优势。淹水培养过程中优势种群多样性指数大体呈现先上升后减小的趋势。主成分分析(PCA)将淹水处理过程分成几类不同的生境, 反映出中、后期细菌群落结构较为稳定; 测序结果表明, 32个优势条带所代表的细菌分别属于厚壁菌门、绿弯菌门、拟杆菌门、变形菌门和酸杆菌门, 且与来自不同地域的水稻土、其他类型土壤、活性污泥以及湖泊沉积物等生态系统的细菌关系密切。  相似文献   

11.
淹水时间对水稻土中地杆菌科群落结构及丰度的影响   总被引:2,自引:0,他引:2  
【目的】通过模拟水稻土淹水过程,探讨地杆菌科(Geobacteraceae)群落结构和相对丰度随淹水时间的动态变化特征,揭示其群落结构和相对丰度变化与微生物Fe(Ⅲ)还原的内在联系。【方法】提取水稻土淹水培养1 h、1 d、5 d、10 d、20 d和30 d后的微生物总DNA,构建地杆菌科16S rDNA克隆文库,采用PCR-RFLP方法分析地杆菌科的群落结构和多样性变化特征,通过Real-time PCR技术测定地杆菌科相对丰度的动态变化。采用厌氧泥浆培养方法,测定水稻土中Fe(Ⅱ)产生量变化。【结果】供试水稻土中,微生物Fe(Ⅲ)还原过程在淹水培养初期变化明显,培养20 d后达到稳定期,最大铁还原潜势为10.16 mg/g,最大反应速率为1.064 mg/(g.d),最大反应速率对应的时间为4.84 d。α多样性指数显示,水稻土中地杆菌科的多样性随淹水时间延长呈现波动性变化,淹水5 d和20 d处理出现2个峰值,而淹水10 d和30 d处理的多样性明显减小。β多样性指数表明淹水过程中群落结构存在明显差异。不同淹水时间共产生了10种地杆菌科优势类型,分别属于Clade 1和Clade 2。Real-time PCR结果表明,地杆菌科与总细菌16S rDNA丰度的比值在淹水培养1 d时最小(1.20%),而20 d时达到最大值(4.54%)。【结论】淹水培养的水稻土中,地杆菌科微生物的多样性和相对丰度的动态变化与微生物Fe(Ⅲ)还原过程密切相关。  相似文献   

12.
Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through 1?N and 13C labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that 1?N uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). 13CO? assimilation into the plant was strongly reduced by flooding, with δ13C reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed 13C was also altered. Thus, 13C recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to be a consequence of impaired uptake and transport. On the other hand, the observed changes in carbohydrate distribution suggest that translocation from leaves to roots was reduced, leading to significant starch accumulation in leaves and further decreases in roots.  相似文献   

13.
The alternating climate between wet and dry periods has important effects on the hydrology and therefore on niche-based processes of water bodies in tropical areas. Additionally, assemblages of microorganism can show spatial patterns, in the form of a distance decay relationship due to their size or life form. We aimed to test spatial and environmental effects, modulated by a seasonal flooding climatic pattern, on the distribution of microalgae in 30 wetlands of a tropical dry forest region: the Pacific coast of Costa Rica and Nicaragua. Three surveys were conducted corresponding to the beginning, the highest peak, and the end of the hydrological year during the wet season, and species abundance and composition of planktonic and benthic microalgae was determined. Variation partitioning analysis (as explained by spatial distance or environmental factors) was applied to each seasonal dataset by means of partial redundancy analysis. Our results show that microalgal assemblages were structured by spatial and environmental factors depending on the hydrological period of the year. At the onset of hydroperiod and during flooding, neutral effects dominated community dynamics, but niche-based local effects resulted in more structured algal communities at the final periods of desiccating water bodies. Results suggest that climate-mediated effects on hydrology can influence the relative role of spatial and environmental factors on metacommunities of microalgae. Such variability needs to be accounted in order to describe accurately community dynamics in tropical coastal wetlands.  相似文献   

14.
Although food resource partitioning among sympatric species has often been explored in riverine systems, the potential influence of prey diversity on resource partitioning is little known. Using empirical data, we modeled food resource partitioning (assessed as dietary overlap) of coexisting juvenile Atlantic salmon (Salmo salar) and alpine bullhead (Cottus poecilopus). Explanatory variables incorporated into the model were fish abundance, benthic prey diversity and abundance, and several dietary metrics to give a total of seventeen potential explanatory variables. First, a forward stepwise procedure based on the Akaike information criterion was used to select explanatory variables with significant effects on food resource partitioning. Then, linear mixed‐effect models were constructed using the selected explanatory variables and with sampling site as a random factor. Food resource partitioning between salmon and bullhead increased significantly with increasing prey diversity, and the variation in food resource partitioning was best described by the model that included prey diversity as the only explanatory variable. This study provides empirical support for the notion that prey diversity is a key driver of resource partitioning among competing species.  相似文献   

15.
Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.  相似文献   

16.
Aim To determine the effect and relative importance of geographic and local environmental factors on species richness and turnover of ant assemblages in floodplain forests across the Amazon basin. Location Twenty‐six mature forest sites scattered along the entire extension of the Amazon River in Brazil. The study area encompassed nearly 18° of longitude and 3.5° of latitude. Methods Systematic collections of ants were performed at each site during the low‐water season (i.e. when forests are not inundated) using three complementary sampling methods. We used variance partitioning techniques to assess the relative effects of the spatial (latitude and longitude) and environmental (rainfall, length of the dry season and flood height) variables on ant species richness and composition. Results There was a twofold variation in the number of species per site, which was largely explained by inter‐site variations in rainfall seasonality and flooding intensity. In general, there were more species at sites located in the western part of the basin, where the dry season is less severe, or near the river estuary, where precipitation is also high and flooding is less intense. Ant community composition was also affected by environmental heterogeneity. For instance, some species only occurred at those sites less affected by the river’s seasonal flooding, whereas others were mostly associated with the drier or wetter regions of the basin. In addition, the turnover of species increased significantly as geographic distances increased. Nevertheless, the rate of change was small given that many species had a broad distribution across the study area. Main conclusions Ant distribution patterns along the floodplain forests of the Amazon appear to be controlled to a relatively large extent by the current gradient in flooding intensity and – most importantly – in precipitation. Altered rainfall regimes resulting from global warming and land‐use change thus have the potential to influence these patterns.  相似文献   

17.

Background

Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress.

Results

Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress.

Conclusion

These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.  相似文献   

18.
19.
Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs’ life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season.  相似文献   

20.
以大兴安岭多年冻土区泥炭地为研究对象,通过室内模拟增温实验,研究温度升高对不同深度(0-150 cm)土壤氮循环功能基因丰度的影响。同时针对0-20 cm和20-40 cm土壤设置两个水分处理,分别为土壤原始含水量和淹水状态,研究水分变化对表层土壤氮循环功能基因丰度的影响。结果表明温度升高显著提高了活动层(0-60 cm)、过渡层(60-80 cm)、永冻层(80-100 cm)中nifH、nirK基因丰度,温度升高显著提高了活动层(0-40 cm)和过渡层(60-80 cm)中nirS基因丰度。温度升高显著提高了过渡层(60-80 cm)NH4+-N和较深永冻层(140-150 cm)NO3--N的含量,但降低了过渡层(60-80 cm)NO3--N和较深永冻层(120-150 cm)NH4+-N的含量,相关性分析表明,NH4+-N含量与nifH和nirS基因丰度呈显著正相关,NO3--N含量与nirK基因丰度呈显著正相关,说明温度升高能够通过改变微生物丰度促进过渡层固氮作用和反硝化作用。在增温条件下,淹水处理使表层土壤nirS和nirK基因丰度及NH4+-N含量降低,但提高了NO3--N含量,说明淹水造成了过度还原的条件使反硝化底物浓度降低,降低反硝化微生物活性进而抑制了土壤反硝化作用。该结果对于明确未来气候变化影响下冻土区泥炭地土壤氮循环过程具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号