首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue transglutaminase 2 (TG2) has recently been shown to have intrinsic serine/threonine kinase activity. Since histones are known to be cross-linked by TG2, we investigated whether histones are also substrates for TG2 kinase activity. TG2 was able to phosphorylate H1, H2A, H2B, H3, and H4 histones in vitro. Using peptide substrates and phosphospecific antibodies we demonstrated that TG2 phosphorylated Ser(10) in H3 and that this phosphorylation was reduced by acetylation, whereas phosphorylation of Ser(10) by TG2 enhanced acetylation. Furthermore we demonstrated that exogenous TG2 phosphorylated H1 and H3 in nucleosome preparations. We examined the abundance of TG2 in DNA-associated proteins from MCF-7 cells treated with phorbol ester (TPA) and 17beta-estradiol (E2). TG2 abundance was significantly reduced in E2-treated cells and enhanced in TPA-treated cells. In summary we have demonstrated that TG2 is able to phosphorylate purified histone proteins, and H3 and H1 in chromatin preparations, and it is associated with chromatin in breast cancer cells. These studies suggest a novel role for TG2 in the regulation of chromatin structure and function.  相似文献   

2.
Increased expression and activity of the ubiquitous enzyme, tissue transglutaminase (TG2), is consistently seen in a variety of models of apoptosis. The p53 oncoprotein is also involved in apoptosis. Here we investigated the interaction of TG2 with p53 and show that the p53 is a substrate for the recently identified serine/threonine kinase activity of TG2. Phosphospecific antibodies indicated that TG2 phosphorylated p53 at Ser(15) and Ser(20), residues that are critically important in the interaction of p53 with Mdm2. The TG2-induced phosphorylation was abrogated by high Ca(2+) concentrations and inhibited by cystamine, a known inhibitor of TG2 cross-linking activity. Furthermore, we demonstrate that TG2-induced phosphorylation of p53 reduces the ability of p53 to interact with Mdm2. Although TG2 cross-linking activity has been clearly implicated in apoptosis, our observations reported here suggest TG2 modification of p53 could be an additional mechanism whereby TG2 could facilitate apoptosis.  相似文献   

3.
Saccharomyces cerevisiae mitochondria, isolated by enzymatic lysis of the cell wall and purified by gradient centrifugation are able to phosphorylate serine residues of exogenous phosphoproteins in the presence of added [γ32P] ATP. Most of the protein kinase activity is bound to the mitochondrial membranes from which it can be partially solubilized by 0.7 M NaCl. The solubilized protein kinase, whose M.W. is approximately 30,000, has been partially purified by Phosphocellulose chromatography: it displays its activity toward “acidic” phosphoproteins (αs2-casein>αs1-casein = phosvitin > β-casein) while it does not phosphorylate histones even in the presence of cAMP. The enzyme requires Mg2+, which cannot be replaced by Mn2+, and is strongly inhibited by inorganic Phosphate.  相似文献   

4.
Tyrosine-protein kinase, phosphorylating tyrosine residues of transmembrane band 3 protein, has been partially purified from human erythrocyte cytosol by DEAE-Sepharose chromatography followed by heparin-Sepharose chromatography. Such a Tyr-protein kinase (36 kDa), as distinct from the Ser/Thre-protein kinases (casein kinase S and TS), appears to display a broader site specificity than does the previously described human erythrocyte P-Tyr-protein phosphatase, dephosphorylating band 3 protein. That is, it is able to phosphorylate not only the highly acidic copolymer poly(Glu-Tyr) but also angiotensin II, lacking an acidic amino acid sequence around the target Tyr residue. Moreover, the phosphorylation of these two substrates exhibits a different pH dependence and a different response to NaCl and 2,3-bisphosphoglycerate. These results suggest that in intact erythrocytes the cytosolic Tyr-protein kinase might phosphorylate band 3 not only on Tyr-8, surrounded by several acidic side-chains (as demonstrated preferentially to occur in isolated ghosts), but also on other Tyr residues surrounded by other amino acid sequences.  相似文献   

5.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

6.
Both cytosol and membranes of human erythrocytes display protein kinase activity towards exogenous protein substrates such as casein, phosvitin andhistones. The histone kinase activity, unlike casein kinase, of both cytosol and membranes is increased by cyclic AMP. The protein kinase forms removed from the membranes with 0.7 M NaCl, phosphorylate only serine residues of both casein and histones through a mechanism cyclic AMP-independent.The protein kinase activity located in the cytosol (hemolysate) is due also to enzyme forms phosphorylating both serine and threonine residues of casein, in addition to forms phosphorylating only serine residues of casein and histones.Also the cytosol kinase forms, once partially purified by Sepharose 6B filtration, appear to be cyclic AMP-independent.  相似文献   

7.
Characterization of a protein serine kinase from yeast plasma membrane   总被引:4,自引:0,他引:4  
A casein kinase activity, which copurifies with the H+-ATPase activity during isolation of plasma membranes Saccharomyces cerevisiae and during centrifugation of the solubilized membrane extract through a sucrose gradient, is separated from the Mr = 100,000 ATPase catalytic polypeptide by subsequent DEAE-cellulose chromatography. The purified casein kinase activity exhibits a low Km of 12 microM MgATP, is maximally stimulated by 6 mM free Mg2+, and is 50% inhibited by 300 microM Zn2+, by 7.5 micrograms of heparin/ml, and by 300 microM orthovanadate. It phosphorylates only seryl residues. The purified casein kinase contains two polypeptides of Mr = 45,000 and 39,000 which yield antibodies which do not cross-react to each other. The two polypeptides seem to originate from a precursor of Mr = 85,000 which is detected by both antibodies in partly purified fractions. In the absence of casein, a zinc and heparin-sensitive phosphorylation of the ATPase polypeptide is observed in partly purified ATPase fractions, and a peptide of similar mobility is phosphorylated, among others, in isolated plasma membranes. The purified ATPase activity is markedly inhibited by incubation in the presence of acid phosphatase. In agreement with a recent report that the purified active ATPase molecule is largely phosphorylated (Yanagita, Y., Abdel-Ghany, M., Raden, D., Nelson, N., and Racker, E. (1987) Proc. Natl. Acad. Sci. U. S. A. 894, 925-929) this data suggests that dephosphorylation leads to deactivation of ATPase activity.  相似文献   

8.
Both cytosol and membranes of human erythrocytes display protein kinase activity towards exogenous protein substrates such as casein, phosvitin and histones. The histone kinase activity, unlike casein kinase, of both cytosol and membranes is increased by cyclic AMP. The protein kinase forms removed from the membranes with 0.7 M NaCl, phosphorylate only serine residues of both casein and histones through a mechanism cyclic AMP-independent. The protein kinase activity located in the cytosol (hemolysate) is due also to enzyme forms phosphorylating both serine and threonine residues of casein, in addition to forms phosphorylating only serine residues of casein and histones. Also the cytosol kinase forms, once partially purified by Sepharose 6B filtration, appear to be cyclic AMP-independent.  相似文献   

9.
The C-terminus of latent membrane protein 1 (LMP1) can be phosphorylated in vivo. However, the protein kinase responsible for LMP1 phosphorylation has not yet been identified. In this study, GST fusion proteins containing the C-terminus of LMP1 were generated and used as substrates to survey the kinases that phosphorylate LMP1. Among several purified protein kinases tested, only protein kinase CK2 (CK2) could specifically phosphorylate LMP1. Using the in-gel kinase assay in the absence and presence of a selective CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole, CK2 was determined to be the major kinase to phosphorylate LMP1 in lymphoma and epithelial cell lines. This is the first study to show that CK2 is a potent kinase to phosphorylate LMP1 in vitro.  相似文献   

10.
Identification of a novel casein kinase activity in HeLa cell nuclei   总被引:1,自引:0,他引:1  
Three casein kinase activities have been resolved by column chromatography of HeLa cell nuclear extracts. In addition to casein kinases NI and NII, which have been described in other cell types, HeLa nuclei contain a third casein kinase activity which we have named NIII. NIII is a cyclic nucleotide-independent casein kinase which uses either Mg2+ or Mn2+ as a divalent cation, but is inhibited by increasing NaCl concentrations in the presence of Mg2+ and has optimal activity at 50 mM NaCl in the presence of Mn2+. In Mg2+, NIII uses only ATP as a phosphate donor, but in Mn2+ NIII transfers phosphate from either ATP or GTP. NIII phosphorylates the serine and threonine residues of casein, but does not phosphorylate phosvitin or calf thymus histones.  相似文献   

11.
Movement of various cargoes toward microtubule minus ends is driven by the microtubule motor cytoplasmic dynein (CD). Many cargoes are motile only during certain cell cycle phases, suggesting that CD function may be under cell cycle control. Phosphorylation of the CD light intermediate chain (DLIC) has been suggested to play a crucial role in modulating CD function during the Xenopus embryonic cell cycle, where CD-driven organelle movement is active in interphase but greatly reduced in metaphase. This down-regulation correlates with hyperphosphorylation of DLIC and release of CD from the membrane. Here we investigate the role of the key mitotic kinase, cdc2-cyclinB1, in this process. We show that DLIC within the native Xenopus CD complex is an excellent substrate for purified Xenopus cdc2-glutathione S-transferase (GST) cyclinB1 (cdc2-GSTcyclinB1) kinase. Mass spectrometry of native DLIC revealed that a conserved cdc2 site (Ser-197) previously implicated in the metaphase modulation of CD remains phosphorylated in interphase and so is unlikely to be the key regulatory site. We also demonstrate that incubating interphase membranes with cdc2-GSTcyclinB1 kinase results in substantial release of CD from the membrane. These data suggest that phosphorylation of DLIC by cdc2 kinase leads directly to the loss of membrane-associated CD and an inhibition of organelle movement.  相似文献   

12.
Protein kinase C from small intestine epithelial cells   总被引:1,自引:0,他引:1  
Protein kinase C activity has been identified in cytosolic and membrane fractions from rat and rabbit small intestine epithelial cells. The cytosolic fraction comprised about the 75% of total activity. Protein kinase C activity was resolved from other protein kinase activities by ion exchange chromatography. Phosphatidylserine or phosphatidylinositol were required for protein kinase C to be active. In addition, the activity was enhanced by the presence of a diacylglycerol. Diolein and dimyristin were the most effective (13-14 fold activation). In the presence of phosphatidylserine and diolein, the Ka for activation by Ca2+ was 10(-7)M. The phorbol ester TPA substituted for diacylglycerol in activating protein kinase C. Brush border and basolateral membranes contained protein kinase C activity, although the specific activity of the basal lateral membranes was four-fold higher than the specific activity of the brush border membranes. The presence of PKC in small intestine epithelial cells might have important implications in the Ca2+ mediated control of ionic transport in this tissue.  相似文献   

13.
In intact rat hepatocytes insulin stimulates the phosphorylation of the beta-subunit of its receptor exclusively on serine residues, which are also phosphorylated in the absence of insulin. In contrast, in partially purified insulin receptors derived from these same cells and in highly purified insulin receptors obtained by immunoprecipitation with anti-receptor antibodies, the receptor beta-subunit is phosphorylated solely on tyrosine residues. For both cell-free systems, insulin's stimulatory action on receptor phosphorylation leads to an increase in phosphotyrosine. When partially purified receptors were used to phosphorylate two exogenous substrates, casein and histone, insulin was found to stimulate the phosphorylation of both tyrosine and serine. However, the basal and insulin-stimulated kinase activity of immunoprecipitated receptors was only tyrosine-specific. From these observations we propose that the insulin-receptor complex consists of two different insulin-stimulatable kinase activities: (1) a tyrosine-specific kinase, which is a constituent of the insulin-receptor structure and whose activation is likely to be the first post-binding event in insulin action; and (2) a serine-specific kinase, which is closely associated with the receptor in the cell membrane.  相似文献   

14.
We have previously shown that the Ste20-like kinase SLK is a microtubule-associated protein inducing actin stress fiber disassembly. Here, we show that v-Src expression can down-regulate SLK activity. This down-regulation is independent of focal adhesion kinase but requires v-Src kinase activity and membrane translocation. SLK down-regulation by v-Src is indirect and is accompanied by SLK hyperphosphorylation on serine residues. Deletion analysis revealed that casein kinase II (CK2) sites at position 347/348 are critical for v-Src-dependent modulation of SLK activity. Further studies show that CK2 can directly phosphorylate SLK at these positions and that inhibition of CK2 in v-Src-transformed cells results in normal kinase activity. Finally, CK2 and SLK can be co-localized in fibroblasts spreading on fibronectin-coated substrates, suggesting a mechanism whereby SLK may be regulated at sites of actin remodeling, such as membrane lamellipodia and ruffles, through CK2.  相似文献   

15.
Protein kinase [EC 2.7.1.37] of human erythrocyte membranes was solubilized with 0.5 M NaCl in 5 mM phosphate buffer, pH 6.7 at 4 degrees C and purified on a CM-Sephadex C-50 column, followed by affinity chromatography on a histone-Sepharose 4B column. The purified protein kinase gave a single band (molecular weight; 41,000) on examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 8.0 and a millimolar range of concentration of Mg2+ was required for its maximum activity. Histone and protamine were well phosphorylated by the protein kinase but casein and phosvitin were poor phosphate acceptors for the enzyme. The enzymic activity was not stimulated by cyclic AMP (cAMP). A cAMP-finding protein from human erythrocyte membranes inhibited the activity of the protein kinase, but the activity was restored with cAMP. A heat stable protein inhibitor from rabbit skeletal muscle also inhibited this enzyme. From these observations, this protein kinase seemed to be a catalytic subunit of the membrane bound cAMP-dependent protein kinase. This enzyme was strongly inhibited with Ca2+ in the presence of 1 mM MgCl2. Various sulfhydryl reagents and polyamines also had inhibitory activity on the protein kinase. Natural substrates of the enzyme were investigated using heat treated membranes and 0.5 M NaCl extracted membrane residues. Band 4.1, 4.2, and 4.5 proteins were phosphorylated but band 2 (spectrin) and band 3 proteins were poor substrates for this protein kinase.  相似文献   

16.
Sphingosine kinase catalyses the phosphorylation of sphingosine to generate sphingosine 1-phosphate, a lipid signaling molecule implicated in roles in a diverse range of mammalian cell processes through its action as both a ligand for G-protein-coupled cell-surface receptors and an apparent intracellular second messenger. This paper describes a rapid, sensitive, and reproducible assay for sphingosine kinase activity using biotinylated sphingosine (biotinyl-Sph) as a substrate and capturing the phosphorylated product with streptavidin-coated membranes. We have shown that both human sphingosine kinase 1 and 2 (hSK1 and hSK2) can efficiently phosphorylate biotinyl-Sph, with K(m) values similar to those of sphingosine. The assay utilizing this substrate has high sensitivity for hSK1 and hSK2, with detection limits in the low-femtomole range for both purified recombinant enzymes. Importantly, we have also demonstrated the capacity of this assay to measure endogenous sphingosine kinase activity in crude cell extracts and to follow changes in this activity following sphingosine kinase activation. Together, these results demonstrate the potential utility of this assay in both cell-based analysis of sphingosine kinase signaling pathways and high-throughput screens for agents affecting sphingosine kinase activity in vitro.  相似文献   

17.
Mitochondria from bovine hearts were fractionated by three different procedures and the fractions were characterized by marker enzymes. Highly purified outer membranes, membrane vesicles, and inner membranes, as well as two high-speed soluble fractions, were obtained. Azide (or oligomycin) resistant ATPase was not found to be a marker for outer membranes. The data were consistent with the association of the protein kinase activity with the soluble matrix of the mitochondria. Activity was highest with histone H2B as the substrate, with histone H1 next in preference. In contrast to the mitochondrial protein kinases studied previously, protamine, casein, and phosvitin were very poor substrates and there was no detectable phosphorylation of pyruvate dehydrogenase. Activity was stimulated by cAMP but not by cGMP, calmodulin, or phosphatidylserine--diolein, with or without Ca2+. Two cAMP-dependent isozymes were separated from the soluble fraction of the mitochondria by chromatography on DE-52 columns. Phosphorylation of histone H2B by the isozymes was inhibited by 98% by Kemptide.  相似文献   

18.
A membrane-bound phosphatidylinositol 4-kinase (PtdIns kinase) has been purified to apparent homogeneity from human erythrocytes. Enzyme activity was solubilized from urea-KCl-stripped, inside-out membrane vesicles by 3% Triton X-100. Purification to apparent homogeneity was accomplished by cation-exchange chromatography on phosphocellulose, followed by heparin-acrylamide chromatography. This resulted in a nearly 3900-fold purification of PtdIns kinase activity to a specific activity of 44 nmol min-1 mg-1. The purified enzyme has an Mr of 59,000 on silver-stained SDS-PAGE; however, many preparations also contain 54 kDa and 50 kDa proteins which are related to the 59 kDa protein and have PtdIns kinase activity. Kinetic analysis of the PtdIns kinase indicate apparent Km values of 40 and 35 microM for phosphatidylinositol and ATP, respectively. The purified enzyme has been reconstituted into phospholipid liposomes and shown to phosphorylate phosphatidylinositol.  相似文献   

19.
A protein kinase which phosphorylates pyruvate kinase (PK) in vitro was purified and characterized from the foot muscle of the anoxia-tolerant gastropod mollusc Busycon canaliculatum. Purification involved four steps: poly(ethylene glycol) fractionation, affinity chromatography on Blue agarose, ion-exchange chromatography on phosphocellulose and preparative isoelectric focusing (pI = 5.5). The activity was monitored by following changes in pyruvate kinase I50 values for L-alanine which have previously been linked to changes in the degree of enzyme phosphorylation. The correlation between enzyme phosphorylation and changes in the L-alanine inhibition constant was also directly demonstrated in the present paper by radioactively labelling PK with [tau-32P]ATP. The final purified protein kinase solution gave a single band on SDS-gel electrophoresis with a molecular weight of 37,000 +/- 2000. Kinetic analysis of the purified protein kinase (PK-kinase) showed a pH optimum of 7.0, an absolute requirement for magnesium ions (Km = 1.29 mM), a relatively high affinity for MgATP (Km = 57 microM), and inhibition by increasing salt concentrations (I50 = 55 mM KCl). The protein kinase activity was not affected by either spermine, heparin, cAMP, cGMP or concentrations of CaCl2 less than 10 mM. The enzyme did not phosphorylate either phosphofructokinase or glycogen phosphorylase, two enzymes that are also phosphorylated during anoxia in whelks. The purified enzyme is different from the catalytic subunit of cAMP-dependent protein kinase as shown by the inability of cAMP to stimulate the protein kinase at all stages of the preparation; cAMP did not activate either crude enzyme, the 7% poly(ethylene glycol) supernatant, or any of the column eluant peak fractions when measured by changes in pyruvate kinase kinetic parameters.  相似文献   

20.
The preparation of clearly delineated plasmalemma (PM) and endosomal subcellular fractions from rat liver has allowed us to compare insulin receptor (IR) kinase activity at the cell surface and in hepatic endosomes (ENs) as a function of dose and time after injected insulin. Tyrosine kinase activity in PM and ENs was measured, after solubilization and partial purification by wheat germ agglutinin chromatography (lectin-purified), using poly(Glu:Tyr) as substrate. Following the injection of a subsaturating dose of insulin (1.5 micrograms/100 g body weight), lectin-purified receptor showed peak activation at 30 s in PM and at 2 min in ENs. As observed previously (Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I. (1986) J. Biol. Chem. 261, 8462-8472) autophosphorylation activity was also augmented following insulin injection. In a pattern virtually identical to that of exogenous kinase activity, autophosphorylation attained peak activity at 30 s in PM and at 2 min in ENs. The time course of IR autophosphorylation in intact membranes was very similar to that observed for lectin purified receptors and was seen with an injected insulin dose as low as 150 ng/100 g body weight. Phosphatase treatment of the solubilized endosomal receptor abolished its enhanced activity. Hence, insulin treatment led to in vivo receptor phosphorylation which was reflected in the enhancement of both tyrosine kinase and autophosphorylation activities. Significant differences in the phosphorylation activities of PM and ENs were observed. Phosphoamino acid analyses revealed that the activated IR of intact PM was autophosphorylated in vitro, at both serine (55%) and tyrosine (45%) residues; whereas the activated IR of intact ENs was phosphorylated in vitro exclusively on tyrosine autophosphorylation specific activity for the activated IR of ENs was 3- to 4-fold that of the IR of PM. This was observed for the lectin purified IRs as well as for IRs of intact cell fractions. The reduced level of IR autophosphorylation in PM was not due to occlusion of tyrosine acceptor sites by prior in vivo phosphorylation. The rapidity with which activated IR accumulates in ENs as well as the sensitivity of endosomal IR kinase to activation by injected insulin are consistent with the endosomal apparatus serving a physiologically significant site for the regulation of transmembrane signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号