首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wheat gluten protein alpha-gliadin, a well known trigger of celiac disease, can be complexed by random copolymers of hydroxyethyl methacrylate (HEMA) and sodium 4-styrene sulfonate (SS). In this work, influence of alpha-gliadin and poly(HEMA-co-SS) concentrations on alpha-gliadin structure was studied using spectroscopic techniques and dynamic light scattering. In 70% ethanol or 0.06M HCl (pH 1.2), alpha-gliadin was found to self-associate upon increasing its concentrations and displayed decreased alpha-helical content and increased beta-turn and beta-sheet contents. At pH 1.2, alpha-gliadin interacted with poly(HEMA-co-SS) to form supra-molecular complex particles. Poly(HEMA-co-SS) induced alpha-gliadin structural changes that mimicked those obtained by varying the protein concentration in pure solution. At pH 6.8, alpha-gliadin was poorly soluble and formed large particles but alpha-helix is still main secondary structure. The influence of the polymer on protein structure was weaker at neutral than acidic pH. Interaction with poly(HEMA-co-SS) disrupted alpha-gliadin conformation and self-association to form new complex particles at neutral pH. This study provides insight into the mechanism of poly(HEMA-co-SS)/alpha-gliadin interaction and the polymer as alpha-gliadin sequestering agents in the supportive treatment of celiac disease.  相似文献   

2.
Ma ZC  Wei YM  Yan ZH  Zheng YL 《Genetika》2007,43(11):1534-1541
To carry out the comparative analysis of alpha-gliadin genes on A genomes of diploid and polyploid wheats, 8 full-length alpha-gliadin genes, including 3 functional genes and 5 pseudogenes, were obtained from diploid wheats, among which 2, 2 and 4 alpha-gliadin genes were isolated from T. urartu, T. monococcum and T. boeoticum, respectively. The results indicated that higher number of alpha-gliadin pseudogenes have been present in diploid wheats before the formation of polyploid wheats. Amino acid sequence comparative analysis among 26 alpha-gliadin genes, including 16 functional genes and 10 pseudogenes, from diploid and polyploid wheats was conducted. The results indicated that all alpha-gliadins contained four coeliac toxic peptide sequences (i.e., PSQQ, QQQP, QQPY and QPYP). The polyglutamine domains are highly variable, and the second polyglutamine stretch is usually disrupted by the lysine or arginine residue at the fourth position. The unique domain I is the most conserved domain. There are 4 and 2 conserved cysteine residues in the unique domains I and II, respectively. Comparative analysis indicated that the functional alpha-gliadin genes from A genome are highly conserved, whereas the identity of pseudogenes in diploid wheats are higher than those in hexaploid wheats. Phylogenetic analysis indicated that all the analyzed functional alpha-gliadin genes could be clustered into two major groups, among which one group could be further divided into 5 subgroups. The origin of alpha-gliadin pseudogene and functional genes were also discussed.  相似文献   

3.
Expression of a wheat alpha-gliadin gene in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
  相似文献   

4.
D G Payan  K Horváth  L Gráf 《Life sciences》1987,40(12):1229-1236
The synthetic peptide containing residues 43-49 of alpha-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. We now demonstrate using radiolabeled alpha-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (KD) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of alpha-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of [125I]alpha-gliadin(43-49) than T-lymphocytes. The lymphocyte alpha-gliadin(43-49) receptor may play an important role in mediating the immunological response to alpha-gliadin.  相似文献   

5.
Coeliac disease (CD) is a T-cell mediated immunological disease of the small intestine which is triggered in susceptible individuals by ingestion of gluten. The pathogenic mechanism of coeliac disease, and the role that alpha-gliadin specific T cells play in mucosal lesions and their involvement in peripheral blood is not yet explained at all. Previous studies have reported proliferative response to alpha-gliadin measured with the classic assay of 3HTdR incorporation. We analysed the activation antigen CD69 on T cells from CD patients and normal individuals following stimulation with alpha-gliadin and different antigens (tetanus toxoid, peptides unrelated to gliadin and PHA). CD69 coexpression with T cell CD3+ and proliferation marker Ki67 was evaluated with time. CD69 coexpression with T cell CD3+, CD4+ and CD8+ was also evaluated. It was found that peripheral blood mononuclear cells (PBMC) of coeliac patients increased their percentage of CD69 positive T cells when stimulated with alpha-gliadin, in comparison with cells from controls. Significant T cell activation was found only in subjects not treated with the gluten free diet; a positive response was found also in two coeliac patients with selective IgA deficiency, anti-endomisium negative, without circulating IgA anti alpha-gliadin or anti-tissue transglutaminase antibodies. The CD69 expression after stimulation was compared with the standard method of 3HTdR incorporation. Our data show that CD69 expression is useful to asses a specific T cell response to alpha-gliadin in coeliac disease. in a very short time. Moreover, the method allows to investigate T cell response at the lymphocyte subsets level, which represents a useful tool in the diagnosis of coeliac disease.  相似文献   

6.
7.
8.
Celiac disease is a permanent immune-mediated food intolerance triggered by ingestion of wheat gliadins in genetically susceptible individuals. It has been reported that tissue transglutaminase plays an important role in the onset of celiac disease by converting specific glutamine residues within gliadin fragments into glutamic acid residues. This process increases binding affinity of gliadin peptides to HLA-DQ2/DQ8 molecules, thus enhancing the immune response. The aim of the present study was to achieve a detailed structural characterization of modifications induced by transglutaminase on gliadin peptides. Therefore, structural analyses were carried out on a recombinant alpha-gliadin and on a panel of 26 synthetic peptides, overlapping the complete protein sequence. Modified glutamine residues were identified by means of advanced mass-spectrometric methodologies on the basis of MALDI-TOF-MS and tandem mass spectrometry. Results led to the identification of 19 of 94 glutamine residues present in the recombinant alpha-gliadin, which were converted into glutamic acid residues by a transglutaminase-mediated reaction. This allowed us to achieve a global view of the modifications induced by the enzyme on this protein. Furthermore, results gathered could likely be utilized as relevant information for a better understanding of processes leading to T-cell recognition of gliadin peptides involved in celiac disease.  相似文献   

9.
According to the two distal and conserved regions of known alpha-gliadin genes, gene-specific primers for alpha-gliadin were designed, and the coding regions of four gliadin genes (i.e. GliTd-1, GliTd-2, GliTd-3 and GliTd-4) with the length of about 800 bp were isolated from the genomic DNA of wild emmer wheat (Triticum dicoccoides). No introns were observed. Sequence comparison indicated that these genes should be classified as alpha-gliadins. GliTd-3 (GenBank accession No.DQ140351) and GliTd-4 (DQ140352) were potentially functional, whereas GliTd-1 (DQ140349) and GliTd-2 (DQ140350) were both pseudogenes by the definition of in-frame stop codons and frameshifts. Six conserved cysteine residues were observed. Sequence analysis suggested that the motif units of repetitive domain for the four newly detected genes were different from the known genes, and the QQQP sequence before the position 60 was more toxic to coeliac patients. Codons for proline were strongly biased. Codons (CAG and CAA) for glutamine were clustered into the specific regions, and the high percentage of pseudogenes resulted from the mutation of CAG --> TAG.  相似文献   

10.
11.
Current knowledge indicates that both innate and adaptive immune responses are involved in Celiac disease (CD) driven by different gliadin peptides. By studying a representative recombinant alpha-gliadin form, a further 25-mer peptide resistant to gastric, pancreatic, and human intestinal brush-border membrane enzymes was detected. This peptide latter encompasses the sequence 31-43 known to elicit the innate immune response in CD. The resistance of 25-mer, as well as that of the already described 33-mer related to the CD adaptive immune response, was confirmed on a standard flour wheat sample representative of the most widespread European varieties.  相似文献   

12.
Structure of wheat gamma-gliadin genes   总被引:8,自引:0,他引:8  
J A Rafalski 《Gene》1986,43(3):221-229
  相似文献   

13.
Local production of IgG4 in human colostrum   总被引:1,自引:0,他引:1  
Total IgG4 levels were determined in 27 colostrum and 27 plasma paired samples by using RIA techniques, and total IgG was determined on the same pairs by using radial immunodiffusion. In colostrum, the mean IgG4 level was 4.6 micrograms/ml (0.6 to 19.0), and in the plasma the mean IgG4 level was 170.5 micrograms/ml (30 to 920). IgG averaged 42.3 micrograms/ml (12 to 240) in colostrum and 7980.9 micrograms/ml (3250 to 16,000) in plasma. Of colostral IgG, 15.3% was IgG4, whereas only 3.5% of plasma IgG was IgG4. Specific IgG4 antibodies to beta-lactoglobulin, bovine serum albumin, bermuda grass, and alpha-gliadin were also assayed. In six patients, strong evidence was found for local mammary production of IgG4-specific antibodies.  相似文献   

14.
One of the diagnostic hallmarks of the histological lesions associated with celiac disease is the extensive infiltration of the small intestinal epithelium by CD8(+) T cells of unknown Ag specificity. In this study, we report recognition of the gliadin-derived peptide (A-gliadin 123-132) by CD8(+) T lymphocytes from celiac patients. A-gliadin 123-132-specific IFN-gamma production and cytotoxic activity were detected in PBMCs derived from patients on gluten-free diet, but not from either celiac patients on gluten-containing diet or healthy controls. In contrast, A-gliadin 123-132-specific cells were isolated from small intestine biopsies of patients on either gluten-free or gluten-containing diets. Short-term T cell lines derived from the small intestinal mucosa and specific for the 123-132 epitope recognized human APC pulsed with either whole recombinant alpha-gliadin or a partial pepsin-trypsin gliadin digest. Finally, we speculate on a possible mechanism leading to processing and presentation of class I-restricted gliadin-derived epitopes in celiac disease patients.  相似文献   

15.
Two recently identified immunodominant epitopes from alpha-gliadin account for most of the stimulatory activity of dietary gluten on intestinal and peripheral T lymphocytes in patients with celiac sprue. The proteolytic kinetics of peptides containing these epitopes were analyzed in vitro using soluble proteases from bovine and porcine pancreas and brush-border membrane vesicles from adult rat intestine. We showed that these proline-glutamine-rich epitopes are exceptionally resistant to enzymatic processing. Moreover, as estimated from the residual peptide structure and confirmed by exogenous peptidase supplementation, dipeptidyl peptidase IV and dipeptidyl carboxypeptidase I were identified as the rate-limiting enzymes in the digestive breakdown of these peptides. A similar conclusion also emerged from analogous studies with brush-border membrane from a human intestinal biopsy. Supplementation of rat brush-border membrane with trace quantities of a bacterial prolyl endopeptidase led to the rapid destruction of the immunodominant epitopes in these peptides. These results suggest a possible enzyme therapy strategy for celiac sprue, for which the only current therapeutic option is strict exclusion of gluten-containing food.  相似文献   

16.
Vibrational Raman optical activity (ROA) spectra of the wheat proteins alpha-gliadin (A-gliadin), omega-gliadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data show that, under the conditions investigated, A-gliadin contains a considerable amount of hydrated alpha-helix, most of which probably lies within a relatively structured C-terminal domain. Smaller quantities of beta-structure and poly(l-proline) II (PPII) helix were also identified. Addition of methanol was found to increase the alpha-helix content at the expense of some of the beta and PPII structure. In comparison, omega-gliadin and the T-A-1 peptide were found to consist of large amounts of well-defined PPII structure with some turns but no alpha-helix. The results for the T-A-1 peptide are in agreement with a model in which HMW-GS are extended but not highly rigid. Application of a pattern recognition technique, based on principal component analysis (PCA), to the ROA spectra reinforces these conclusions.  相似文献   

17.
AIMS: To characterize the peptide hydrolase system of Lactobacillus plantarum CRL 759 and CRL 778 and evaluate their proteolytic activity in reducing gliadin-like fractions. METHODS AND RESULTS: The intracellular peptide hydrolase system of Lact. plantarum CRL 759 and CRL 778 involves amino-, di- (DP), tri- (TP) and endopeptidase activities. These peptidases are metalloenzymes inhibited by EDTA and 1,10-phenanthroline and stimulated by Co2+. DP and TP activities of Lact. plantarum CRL 759 and CRL 778, respectively, were completely inhibited by Cu2+. Lactobacillus plantarum CRL 778 showed the highest proteolytic activity and amino acids release in fermented dough. The synthetic 31-43 alpha-gliadin fragment was hydrolysed to 36% and 73% by Lact. plantarum CRL 778 and CRL 759 respectively. CONCLUSIONS: Lactobacillus plantarum CRL 759 and CRL 778 have an active proteolytic system, which is responsible for the high amino acid release during sourdough fermentation and the hydrolysis of the 31-43 alpha-gliadin-like fragment. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new information of use when obtaining sourdough starters for bread making. Moreover, knowledge regarding lactobacilli capable of reducing the level of gliadin-like fractions, a toxic peptide for coeliac patients, has a beneficial health impact.  相似文献   

18.
Celiac disease, triggered by wheat gliadin and related prolamins from barley and rye, is characterized by a strong association with HLA-DQ2 and HLA-DQ8 genes. Gliadin is a mixture of many proteins that makes difficult the identification of major immunodominant epitopes. To address this issue, we expressed in Escherichia coli a recombinant alpha-gliadin (r-alpha-gliadin) showing the most conserved sequence among the fraction of alpha-gliadins. HLA-DQ8 mice, on a gluten-free diet, were intragastrically immunized with a chymotryptic digest of r-alpha-gliadin along with cholera toxin as adjuvant. Spleen and mesenteric lymph node T cell responses were analyzed for in vitro proliferative assay using a panel of synthetic peptides encompassing the entire sequence of r-alpha-gliadin. Two immunodominant epitopes corresponding to peptide p13 (aa 120-139) and p23 (aa 220-239) were identified. The response was restricted to DQ and mediated by CD4+ T cells. In vitro tissue transglutaminase deamidation of both peptides did not increase the response; furthermore, tissue transglutaminase catalyzed extensive deamidation in vitro along the entire r-alpha-gliadin molecule, but failed to elicit new immunogenic determinants. Surprisingly, the analysis of the cytokine profile showed that both deamidated and native peptides induced preferentially IFN-gamma secretion, despite the use of cholera toxin, a mucosal adjuvant that normally induces a Th2 response to bystander Ags. Taken together, these data suggest that, in this model of gluten hypersensitivity, deamidation is not a prerequisite for the initiation of gluten responses.  相似文献   

19.
This study concerns the interfacial properties of the plant proteins-arabic gum coacervates, which are involved in encapsulation processes based on complex coacervation. The results make it possible to deduce the prerequisite characteristics of the protein, which are involved in the coacervate interfacial properties. The influence of pH and concentration on protein interfacial properties was also studied so as to enable us to predict the best conditions to achieve encapsulation. It has been established that, to obtain a good encapsulation yield, the coacervate must show high surface-active properties and its adsorption on the oil droplets must be favored compared to the free protein adsorption. On the other hand, mechanical properties of the interfacial film made of the coacervate, appear to be a key parameter, as reflected by the dilational viscoelasticity measurements. When compared to the properties of the proteins films, an increase of the rigidity of the interfacial film was shown with the coacervates. It was also observed that viscoelastic properties of the coacervate film were strongly reduced, as well as the associated relaxation times. In acidic conditions, the coacervates containing alpha-gliadin are characterized by an interfacial viscoelastic behavior. This behavior reflects the softness of the interfacial film. This viscoelasticity allows also the formation of a continuous layer around the oil droplets to be encapsulated. Drop tensiometry is shown to be a method that could allow the most adapted protein to be selected and the conditions of the coacervation process to be optimized with regard to concentration and pH.  相似文献   

20.
Celiac disease is driven by intestinal T cells responsive to proline-rich gluten peptides that often harbor glutamate residues formed by tissue transglutaminase-mediated glutamine conversion. The disease is strongly associated with the HLA variant DQ2.5 (DQA1*05, DQB1*02), and intestinal gluten-reactive T cells from DQ2.5-positive patients are uniquely restricted by this HLA molecule. In this study, we describe the mapping of two novel T cell epitopes of gamma-gliadin and the experimental identification of the DQ2.5 binding register of these and three other gamma-gliadin epitopes. The new data extend the knowledge base for understanding the binding of gluten peptides to DQ2.5. The alignment of the experimentally determined binding registers of nine gluten epitopes reveal positioning of proline residues in positions P1, P3, P6, and P8 but never in positions P2, P4, P7, and P9. Glutamate residues formed by tissue transglutaminase-mediated deamidation are found in position P1, P4, P6, P7, or P9, but only deamidations in positions P4 and P6, and rarely in P7, seem to be crucial for T cell recognition. The majority of these nine epitopes are recognized by celiac lesion T cells when presented by the related but nonassociated DQ2.2 (DQA1*0201, DQB1*02) molecule. Interestingly, the DQ2.2 presentation for most epitopes is less efficient than presentation by the DQ2.5 molecule, and this is particularly prominent for the alpha-gliadin epitopes. Contrary to previous findings, our data do not show selective presentation of DQ2.5 over DQ2.2 for gluten epitopes that carry proline residues at the P3 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号