首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bolden  J Aucker    A Weissbach 《Journal of virology》1975,16(6):1584-1592
Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha.  相似文献   

2.
3.
4.
5.
6.
RNA synthesis has been studied in isolated nuclei of HeLa cells. The incubation medium has been optimized for RNA synthesis and the requirements for the presence of specific components previously used by other investigators has been examined. Nuclei isolated by centrifugation through 2 M sucrose synthesize RNA linearly for at least 1 h only at low temperature (25°C). Low molecular weight RNA is found in the supernatant fraction after incubation; this RNA accounts for about 10% of the RNA synthesized. The RNA which remains within nuclei is of high molecular weight and processing of this RNA into molecules of the size of cytoplasmic mRNA does not seem to occur in isolated nuclei. We have studied the effect of an inhibitor of protein-nucleic acid interaction — aurintricarboxylic acid — on RNA synthesis by isolated nuclei. At concentrations below 0.1 mM, this drug does not inhibit RNA synthesis effectively, whereas at concentrations above 0.1 mM it inhibits RNA synthesis by about 80%. In view of the proposed mechanism of action of aurintricarboxylic acid, we suggest that completion of nucleotide chains initiated before nuclei isolation accounts for 20% of the RNA synthesized in our system by isolated nuclei, whereas nucleotide chains initiated during the in vitro incubation account for 80% of the RNA synthesized.  相似文献   

7.
8.
Nuclei prepared from HeLa cells by lysis with nonionic detergents or by a nonaqueous fractionation procedure were assayed for enzymatic activities which synthesize, bind, and degrade 2',5'-oligo(A). Isolated nuclei synthesized micromolar concentrations of 2',5'-oligo(A) when incubated with poly(inosinic) . poly(cytidylic) acid. The products of nuclear synthesis were identified with authentic 2',5'-oligo(A) by several criteria. The nuclei synthesized nanomolar amounts of 2',5'-oligo(A) even when incubated without added double-stranded RNA. These oligonucleotides were identified by their pattern of degradation with different nucleases and by a specific competition-binding assay. This assay revealed the presence in nuclei of an activity which binds 2',5'-oligo(A) with an affinity constant similar to that of the cytoplasmic binding activity previously identified with the 2',5'-oligo(A)-dependent endoribonuclease (Nilsen, T. W., Wood, D. L., and Baglioni, C. (1981) J. Biol. Chem. 256, 10751-10754). The nuclei had also an activity which degraded 2',5'-oligo(A). Finally, unincubated nuclei isolated by the nonaqueous fractionation procedure contained detectable concentrations of 2',5'-oligo(A). These results show that an activator of the enzyme which synthesize 2',5'-oligo(A) is present in nuclei and that these oligonucleotides are normally formed in HeLa cells, and suggest a possible role for the 2',5'-oligo(A)-activated endoribonuclease in nuclear RNA metabolism.  相似文献   

9.
RNA synthesis has been studied in isolated nuclei of HeLa cells. The incubation medium has been optimized for RNA synthesis and the requirements for the presence of specific components previously used by other investigators has been examined. Nuclei isolated by centrifugation through 2 M sucrose synthesize RNA linearly for at least 1 h only at low temperature (25 degrees C). Low molecular weight RNA is found in the supernatant fraction after incubation; this RNA accounts for about 10% of the RNA synthesized. The RNA which remains within nuclei is of high molecular weight and processing of this RNA into molecules of the size of cytoplasmic mRNA does not seem to occur in isolated nuclei. We have studied the effect of an inhibitor of protein-nucleic acid interaction - aurintricarboxylic acid - on RNA synthesis by isolated nuclei. At concentrations below 0.1 mM, this drug does not inhibit RNA synthesis effectively, whereas at concentrations above 0.1 mM it inhibits RNA synthesis by about 80%. In view of the proposed mechanism of action of aurintricarboxylic acid, we suggest that completion of nucleotide chains initiated before nuclei isolation accounts for 20% of the RNA synthesized in our system by isolated nuclei, whereas nucleotide chains initiated during the in vitro incubation account for 80% of the RNA synthesized.  相似文献   

10.
1. In nuclei isolated from cells of the B50 rat neuroblastoma line the stimulatory effect of methyl mercury on alpha-amanitin-sensitive RNA synthesis is very much reduced compared to the stimulatory effect in HeLa nuclei (see: Frenkel G. D. and Randles K. (1982) Specific stimulation of alpha-amanitin-sensitive RNA synthesis in isolated HeLa nuclei by methyl mercury. J. biol. Chem. 257, 6275-6279). 2. The stimulatory effect of another mercury compound, p-hydroxymercuribenzoate, was also much less pronounced in the B50 nuclei. 3. Similar results were obtained with nuclei isolated from B50 cells which had been induced to differentiate by exposure to dibutaryl cyclic AMP. 4. Nuclei isolated from cells of another rat neuroblastoma line (B35), and nuclei from cells of a human neuroblastoma line both exhibited levels of stimulation similar to that of HeLa nuclei. 5. The B50 and HeLa cells were also compared as to their sensitivity to other effects of methyl mercury.  相似文献   

11.
12.
13.
14.
In a system containing isolated HeLa cell nuclei the release of RNA from the nuclei may be paralleled with the antagonistic process, i. e., RNA translocation into the nuclei. The RNA release from the nuclei depends on incubation time, pH, Mg2+ and nucleoside triphosphate concentration. The rate of reverse transport depends on pH, size of RNA to be translocated and the physiological state of the nuclear membrane. Low molecular weight RNAs (less than 10 S) are translocated into the nuclei most effectively. The nuclei of synchronized HeLa cells in the G1-period are more "permeable" for translocated RNA as compared with the S-phase HeLa cell nuclei.  相似文献   

15.
DNA methylase from HeLa cell nuclei.   总被引:10,自引:10,他引:0       下载免费PDF全文
A DNA methylase has been purified 270-fold from HeLa cell nuclei by chromatography on DEAE-cellulose, phosphocellulose, and hydroxyapatite. The enzyme transfers methyl groups from S-adenosyl-L-methionine to cytosine residues in DNA. The sole product of the reaction has been identified as 5-methylcytosine. The enzyme is able to methylate homologous (HeLa) DNA, although to a lesser extent than heterologous DNA. This may be due to incomplete methylation of HeLa DNA synthesized in vivo. The HeLa enzyme can methylate single-stranded DNA, and does so to an extent three times greater than that of the corresponding double-stranded DNA. In single-stranded M. luteus DNA, at least 2.4% of the cytosine residues can be methylated in vitro by the enzyme. The enzyme also can methylate poly (dG-dC-dG-dC) and poly (dG, dC). Bilateral nearest neighbors to the 5-methylcytosine have been determined with M. luteus DNA in vitro and HeLa DNA in vivo. The 5' neighbor can be either G or C while the 3' neighbor is always G and this sequence is, thus, p(G/C)pmCpG.  相似文献   

16.
A non-enzymic protein factor that increases the in vitro rate of synthesis by HeLa DNA polymerase alpha 15- to 30-fold with denatured DNA as template has been partially purified from the cytoplasmic fraction of HeLa cells. The stimulatory effect is highly specific for HeLa DNA polymerase alpha and for DNA templates that contain extensive regions of single-strandedness. Synthesis with denatured DNA as template presumably proceeds from 3'-hydroxyl termini formed at loop-back regions since the synthesized DNA product and template are covalently linked. The stimulatory protein factor chromatographs as a basic protein, has an approximate molecular weight of 30,000 daltons and binds with moderate affinity to denatured DNA cellulose, being eluted by o.4M NaCl. The purified factor lacks detectable DNA polymerase, exo- and endodeoxyribonuclease and RNA polymerase activities. It also does not promote helix-coil transitions with poly[d(A-T)] and Clostridium perfringens DNA.  相似文献   

17.
Further evidence of mRNA in HeLa cells with a half-life two hours or less is given. A kinetic model of RNA synthesis in HeLa cells is described in which equilibration of label occurs first into the acid soluble pool (evidence is given that this pool feeds RNA synthesis) and thence in nuclear and cytoplasmic molecules. The measured accumulation of label in nuclear and cytoplasmic poly(A) is examined with the model and parameters were found which are consistent with the quantitative transfer of nuclear poly(A) to the cytoplasm. The strengths and limitations of the model are discussed.  相似文献   

18.
J L Manley 《Cell》1983,33(2):595-605
  相似文献   

19.
Purified vaccinia virus rapidly inhibited HeLa cell protein synthesis in the presence of actinomycin D. Under these conditions host polyribosomes were extensively degraded but the mRNA was stable as indicated by a greater than 90% recovery of prelabeled polyadenylylated RNA. Although actinomycin D prevented the synthesis of host mRNA and poly(A) in uninfected cells, incorporation of adenosine into poly(A) was inhibited by less than 50% in infected cells. Further analysis indicated that there was little or no normal size viral mRNA but that a unique class of small poly(A)-rich RNA was made in the presence of actinomycin D. From measurements of the RNase resistance and base composition of the RNA, approximately 40% of the nucleotide sequence was estimated to be poly(A). The poly(A)-rich RNA was found associated with small polyribosomes and monoribosomes that were inactive in protein synthesis. It was suggested that the poly(A) segment of the RNA is formed by the poly(A) polymerase previously found in vaccinia virus cores and that the inactive RNA, by competing with host mRNA, may contribute to the virus-mediated inhibition of host protein synthesis observed in the presence of actinomycin D.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号