首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

2.
Chromosome IV is the smallest chromosome of Aspergillus nidulans. The centromere-proximal portion of the chromosome was mapped physically using overlapping clones of a cosmid genomic library. Two contiguous segments of a physical map, based on restriction mapping of cosmid clones, were generated, together covering more than 0.4 Mb DNA. A reverse genetic mapping approach was used to establish a correlation between physical and genetic maps; i.e., marker genes were integrated into physically mapped segments and subsequently mapped by mitotic and meiotic recombination. The resulting data, together with additional classical genetic mapping, lead to a substantial revision of the genetic map of the chromosome, including the position of the centromere. Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis. The portion of the chromosome containing the functional centromere was not mapped because repeat-rich regions hindered further chromosome walking. The size of the missing segment was estimated to be between 70 and 400 kb.  相似文献   

3.
DNA was isolated from a circular derivative of chromosome III to prepare a library of recombinant plasmids enriched in chromosome III sequences. An ordered set of recombinant plasmids and bacteriophages carrying the contiguous 210-kilobase region of chromosome III between the HML and MAT loci was identified, and a complete restriction map was prepared with BamHI and EcoRI. Using the high frequency transformation assay and extensive subcloning, 13 ARS elements were mapped in the cloned region. Comparison of the physical maps of chromosome III from three strains revealed that the chromosomes differ in the number and positions of Ty elements and also show restriction site polymorphisms. A comparison of the physical map with the genetic map shows that meiotic recombination rates vary at least tenfold along the length of the chromosome.  相似文献   

4.
Cheng Z  Presting GG  Buell CR  Wing RA  Jiang J 《Genetics》2001,157(4):1749-1757
Large-scale physical mapping has been a major challenge for plant geneticists due to the lack of techniques that are widely affordable and can be applied to different species. Here we present a physical map of rice chromosome 10 developed by fluorescence in situ hybridization (FISH) mapping of bacterial artificial chromosome (BAC) clones on meiotic pachytene chromosomes. This physical map is fully integrated with a genetic linkage map of rice chromosome 10 because each BAC clone is anchored by a genetically mapped restriction fragment length polymorphism marker. The pachytene chromosome-based FISH mapping shows a superior resolving power compared to the somatic metaphase chromosome-based methods. The telomere-centromere orientation of DNA clones separated by 40 kb can be resolved on early pachytene chromosomes. Genetic recombination is generally evenly distributed along rice chromosome 10. However, the highly heterochromatic short arm shows a lower recombination frequency than the largely euchromatic long arm. Suppression of recombination was found in the centromeric region, but the affected region is far smaller than those reported in wheat and barley. Our FISH mapping effort also revealed the precise genetic position of the centromere on chromosome 10.  相似文献   

5.
Summary Human chromosome 13 loci homologous to seven recombinant DNA probes were mapped using in situ hybridization of 3H-radiolabeled probes to metaphase chromosomes. Each of these seven probes reveals at least one restriction fragment length polymorphism, and thus each probe is potentially valuable in a genetic linkage map of this autosome. The data presented in this paper map the seven loci to specific regions of chromosome 13. This mapping should allow a future comparison of genetic distance with physical distance on this chromosome, and may permit better utilization of these probes in the clinical diagnosis of human chromosomal rearrangements involving chromosome 13.  相似文献   

6.
High-resolution cytogenetic-based physical map of human chromosome 16   总被引:6,自引:0,他引:6  
About ScienceDirect 《Genomics》1992,13(4):1178-1185
A panel of 54 mouse/human somatic cell hybrids, each possessing various portions of chromosome 16, was constructed; 46 were constructed from naturally occurring rearrangements of this chromosome, which were ascertained in clinical cytogenetics laboratories, and a further 8 from rearrangements spontaneously arising during tissue culture. By mapping 235 DNA markers to this panel of hybrids, and in relation to four fragile sites and the centromere, a cytogenetic-based physical map of chromosome 16 with an average resolution of 1.6 Mb was generated. Included are 66 DNA markers that have been typed in the CEPH pedigrees, and these will allow the construction of a detailed correlation of the cytogenetic-based physical map and the genetic map of this chromosome. Cosmids from chromosome 16 that have been assembled into contigs by use of repetitive sequence fingerprinting have been mapped to the hybrid panel. Approximately 11% of the euchromatin is now both represented in such contigs and located on the cytogenetic-based physical map. This high-resolution cytogenetic-based physical map of chromosome 16 will provide the basis for the cloning of genetically mapped disease genes, genes disrupted in cytogenetic rearrangements that have produced abnormal phenotypes, and cancer breakpoints.  相似文献   

7.
8.
We have constructed a high-resolution cytogenetic map with 168 DNA markers, including 90 RFLP markers for human chromosome 11. The cosmid clones were mapped by fluorescence in situ suppression hybridization, in which discrete fluorescent signals can be detected directly on prometaphase R-banded chromosomes. Although these cosmid clones were distributed throughout the chromosome, they had some tendency to localize in the regions of R-positive band, such as 11p15, 11p11.2, 11q13, 11q23, and 11q25. Since these regions of chromosome 11 are considered to contain genes responsible for certain genetic diseases, cancer breakpoints involved in chromosome rearrangements, and tumor-suppressor genes, this high-resolution cytogenetic map will contribute to the molecular characterization of such genes. This map will also provide many landmarks essential for construction of the complete physical map with contigs of cosmid and YAC clones.  相似文献   

9.
In situ DNA hybridization with 18S-28S and 5S ribosomal DNA probes was used to map 18S-28S nucleolar organizers and tandem 5S repeats to meiotic chromosomes of cotton (Gossypium hirsutum L.). Mapping was performed by correlating hybridization sites to particular positions in translocation quadrivalents. Arm assignment required translocation quadrivalents with at least one interstitial chiasma and sufficient distance between the hybridization site and the centromere. We had previously localized a major 18S-28S site to the short arm of chromosome 9; here we mapped two additional major 18S-28S sites to the short arm of chromosome 16 and the left arm of chromosome 23. We also identified and mapped a minor 18S-28S site to the short arm of chromosome 7. Two 5S sites of unequal size were identified, the larger one near the centromere of chromosome 9 and the smaller one near the centromere of chromosome 23. Synteny of 5S and 18S-28S sites indicated homeology of chromosomes 9 and 23, while positions of the other two 18S-28S sites supplement genetic evidence that chromosomes 7 and 16 are homeologous.  相似文献   

10.
Linkage maps constructed from genetic analysis of gene order and crossover frequency provide few clues to the basis of genomewide distribution of meiotic recombination, such as chromosome structure, that influences meiotic recombination. To bridge this gap, we have generated the first cytological recombination map that identifies individual autosomes in the male mouse. We prepared meiotic chromosome (synaptonemal complex [SC]) spreads from 110 mouse spermatocytes, identified each autosome by multicolor fluorescence in situ hybridization of chromosome-specific DNA libraries, and mapped >2,000 sites of recombination along individual autosomes, using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites. We show that SC length is strongly correlated with crossover frequency and distribution. Although the length of most SCs corresponds to that predicted from their mitotic chromosome length rank, several SCs are longer or shorter than expected, with corresponding increases and decreases in MLH1 frequency. Although all bivalents share certain general recombination features, such as few crossovers near the centromeres and a high rate of distal recombination, individual bivalents have unique patterns of crossover distribution along their length. In addition to SC length, other, as-yet-unidentified, factors influence crossover distribution leading to hot regions on individual chromosomes, with recombination frequencies as much as six times higher than average, as well as cold spots with no recombination. By reprobing the SC spreads with genetically mapped BACs, we demonstrate a robust strategy for integrating genetic linkage and physical contig maps with mitotic and meiotic chromosome structure.  相似文献   

11.
An accurate physical map of the location of the 5S and the 18S-5.8S-25S rRNA genes and a repetitive DNA sequence has been produced on Aegilops umbellulata Zhuk., (2n = 2x = 14) chromosomes by in situ hybridization. Chromosome morphology together with the hybridization pattern of pSc119.2, a DNA sequence from rye, allowed identification and discrimination of different chromosomes; pSc119.2 hybridizes with all Ae. umbellulata chromosomes at the telomeres, except for the short arm of chromosome 6U, and shows intercalary sites on the long arms of chromosomes 6U and 7U. The 5S and 18S-25S rDNA have been mapped physically only on the short arms of chromosomes 1U and 5U. On chromosome 1U the order of the genes is 5S rDNA subterminal and 18S-25S rDNA more proximal, while on chromosome 5U the position of the genes is reversed. The relative order of the genes, together with the hybridization pattern of the pSc119.2, is useful in identifying whole chromosomes or chromosome segments from Ae. umbellulata in recombinant or addition lines with wheat. The data help link the physical organization of chromosomes to the genetic map. Other members of the Triticeae vary in the presence and order of the 5S and 18S-25S rDNA sequences on groups 1 and 5, indicating multiple and complex evolutionary rearrangements of the chromosome arms.  相似文献   

12.
A series of human chromosome 3-specific DNA fragments isolated and characterized from a lamda phage genomic library were regionally localized on human chromosome 3. This was accomplished using filter hybridization blot analysis of a human chromosome 3 hybrid cell deletion mapping panel. Twenty-three new anonymous DNA fragments were assigned to one of four physical regions of chromosome 3. Seventeen DNA fragments were mapped to the long arm of chromosome 3, including one DNA fragment that demonstrated a restriction fragment length polymorphism (RFLP). Five DNA fragments were assigned to 3p14.2----pter, including one highly polymorphic fragment sublocalized at 3p25----pter by in situ hybridization. This DNA fragment is the second reported distal 3p polymorphic probe. One DNA fragment was localized to 3p14----p14.2. In addition, three fragments previously assigned to chromosome 3 were confirmed. Polymorphic DNA probes DNF15S2 (formerly D1S1) and D3S2 were mapped to 3p14.2----pter. The previous 3p25 in situ localization of the c-raf-1 oncogene was supported by deletion panel mapping. The physical localization of these twenty-three new DNA fragments has more than doubled the number of cloned DNA fragments assigned to chromosome 3. These and future regional assignments of DNA fragment probes will facilitate construction of both a physical and genetic linkage map of chromosome 3. They may also be useful in characterizing the chromosomal and molecular aberrations involved in small-cell lung cancer (SCLC), renal cell carcinoma, other malignancies, and the 3p14.2 common fragile site.  相似文献   

13.
The developments of molecular marker-based genetic linkage maps are now routine. Physical maps based on contigs of large insert genomic clones have been established in several plant species. However, integration of genetic, physical, and cytological maps is still a challenge for most plant species. Here we present an integrated map of rice (Oryza sativa L.) chromosome 5, developed by fluorescence in situ hybridization mapping of 18 bacterial artificial chromosome (BAC) clones or PI-derived artificial chromosome (PAC) clones on meiotic pachytene chromosomes. Each BAC/PAC clone was anchored by a restriction fragment length polymorphism marker mapped to the rice genetic linkage map. This molecular cytogenetic map shows the genetic recombination and sequence information of a physical map, correlated to the cytological features of rice chromosome 5. Detailed comparisons of the distances between markers on genetic, cytological, and physical maps, revealed the distributions of recombination events and molecular organization of the chromosomal features of rice chromosome 5 at the pachytene stage. Discordance of distances between the markers was found among the different maps. Our results revealed that neither the recombination events nor the degree of chromatin condensation were evenly distributed along the entire length of chromosome 5. Detailed comparisons of the correlative positions of markers on the genetic, cytological, and physical maps of rice chromosome 5 provide insight into the molecular architecture of rice chromosome 5, in relation to its cytological features and recombination events on the genetic map. The prospective applications of such an integrated cytogenetic map are discussed.  相似文献   

14.
DNA sequences homologous to single-copy genes were labelled with biotinylated dUTP or digoxygenin-labelled dUTP and hybridized to chromosome spreads. The hybridization signals were visualized with fluorescent avidin- or antibody-conjugates. This method allowed the detection of DNA targets on metaphase chromosomes as small as 1.4 kb. The hybridization signals were identified as fluorescent spots on both sister chromatids. Using an 18S rDNA probe as marker to identify chromosomes II and III it was possible to assign single-copy genes to these chromosomes. In the line V30 the endogenous chalcone synthase gene (chsA) was mapped at the distal end of the short arm of chromosome 5. The cDNA probe for this single-copy gene was 1.4 kb. In contrast, in the lines Mitchell and V26 chsA was localized at the distal end of the long arm of chromosome 3, suggesting that a chromosomal rearrangement had taken place. In a transformed Petunia uidA, transgenes were detected using a 2.7 kb probe. One transgene was mapped on one of the homologues of chromosome II proximal to the ribosomal genes. This homologue could be distinguished from the other by having the ribosomal genes at the distal end of the long arm. Using multicolour fluorescence in situ hybridization it was shown that it is possible to detect the endogenous chsA genes and both transgenes simultaneously.  相似文献   

15.
The genetic and cytogenetic map around the chromosome 1 region shown to be linked with polledness and intersexuality (PIS) in the domestic goat (Capra hircus) was refined. For this purpose, a goat BAC library was systematically screened with primers from human coding sequences, scraped chromosome 1 DNA, bovine microsatellites from the region, and BAC ends. All the BACs (n = 30) were mapped by fluorescence in situ hybridization (FISH) on goat chromosome 1q41-q45. The genetic mapping of 30 new goat polymorphic markers, isolated from these BACs, made it possible to reduce the PIS interval to a region of less than 1 cM on goat chromosome 1q43. The PIS locus is now located between the two genes ATP1B and COP, which both map to 3q23 in humans. Genetic, cytogenetic, and comparative data suggest that the PIS region is now probably circumscribed to an approximately 1-Mb DNA segment for which construction of a BAC contig is in progress. In addition, a human YAC contig encompassing the blepharophimosis-ptosis-epicanthus-inversus region was mapped by FISH to goat chromosome 1q43. This human disease, mapped to HSA 3q23 and affecting the development and maintenance of ovarian function, could be a potential candidate for goat PIS.  相似文献   

16.
A genetic linkage map for human chromosome 3 has been constructed using 41 polymorphic DNA markers genotyped in 40 CEPH reference families. The map spans a genetic distance of 261 cM in males and 413 cM in females; the ratio of these distances (approximately 1.6 in favor of female meioses) was fairly constant across the map. Frequency of recombination was relatively uniform throughout much of the chromosome, except that in both telomeric regions recombination was more frequent than the physical distances would predict. The genetic map was basically in agreement with physical localization of 24 loci that were mapped by fluorescent in situ hybridization. This map can be used for linkage studies for genetic diseases, and it will serve as a step toward a high-resolution map for human chromosome 3.  相似文献   

17.
In spite of the importance of Citrus in agriculture and recent progress in genetic mapping and cytogenetics of this group, chromosome mapping of Citrus species is still limited to rDNA probes. In order to obtain a better chromosome characterization of one species from this group, CMA/DAPI double staining followed by in situ hybridization using 45S rDNA and 24 BACs (BAC-FISH) were used on Poncirus trifoliata. The BACs used were obtained from a genomic library of this species and were selected by membrane hybridization using genomic DNA. Four of them were isolated from the Citrus tristeza virus (Ctv) resistance gene region. The P. trifoliata karyotype is composed of two chromosome pairs with one terminal and one proximal CMA(+) band (B type chromosomes), four chromosome pairs with a single CMA(+) band (D type) and three chromosome pairs without bands (F type). In situ hybridization with 13 of the BACs gave single copy signals on seven chromosome pairs. At least one BAC was mapped on each arm of the two B chromosome pairs. Among the four D chromosome pairs, two were identified by BACs mapped on the long arms, one has a 45S rDNA site and the other had no signal. Six BACs allowed identification of the three F chromosome pairs, with one pair hybridizing with four BACs from the Ctv resistance gene region. In summary, all nine chromosome pairs could be differentiated, seven of them by BAC-FISH, while the other two chromosomes could be recognized by the CMA(+) band pattern and 45S rDNA sites. This first BAC-FISH map gives a general framework for comparative genome structure and evolutionary studies in Citrus and Poncirus, allowing the integration of genetic and physical maps when these BACs are included.  相似文献   

18.
In situ hybridization was used to map 21 restriction fragment length polymorphism (RFLP) probes to linkage groups 5 and 6 of hexaploid wheat (Triticum aestivum L. em Thell.) in order to compare physical distances and genetic distances between adjacent markers. All 21 probes hybridized to the corresponding homoeologous chromosome arms. The linear order and linkage relationships among the DNA probes on the in situ-based physical maps were generally the same as those on the RFLP-based genetic maps. However, significant differences were observed between the centiMorgan distances on a linkage map and the physical distances of the probes using in situ-based techniques. The results indicated a clustering of polymorphic RFLP markers in the middle of all of the homoeologous group 5 and 6 chromosome arms. This suggests that the available linkage maps do not completely cover the physical length of the chromosomes. As with the genetic maps, the physical map clearly showed the presence of nonhomoeologous rearrangements in the terminal regions of chromosome arms 5AL and 6BS. However, the physical mapping gave an indication of the physical size of the rearrangements as well as their arm location.  相似文献   

19.
A physical map of the chromosome of N. meningitidis Z2491 (serogroup A, subgroup IV-1) has been constructed. Z2491 DNA was digested with NheI, SpeI, SgfI, PacI, BglII, or PmeI, resulting in a limited number of fragments that were resolved by contour-clamped homogeneous electric field (CHEF) electrophoresis. The estimated genome size for this strain was 2,226 kb. To construct the map, probes corresponding to single-copy genes or sequences were used on Southern blots of chromosomal DNA digested with the different mapping enzymes and subjected to CHEF electrophoresis. By determining which fragments from different digests hybridized to each specific probe, it was possible to walk back and forth between digests to form a circular macrorestriction map. The intervals between mapped restriction sites range from 10 to 143 kb in size. A total of 117 markers have been placed on the map; 75 represent identified genes, with the remaining markers defined by anonymous cloned fragments of neisserial DNA. Comparison of the arrangement of genetic loci in Z2491 with that in gonococcal strain FA1090, for which a physical map was previously constructed, revealed complex genomic rearrangements between the two strains. Although gene order is generally conserved over much of the chromosome, a region of approximately 500 kb shows translocation and/or inversion of multiple blocks of markers between the two strains. Even within the relatively conserved portions of the maps, several genetic markers are in different positions in Z2491 and FA1090.  相似文献   

20.
N L Carson  N E Simpson 《Genomics》1991,11(2):379-388
A physical map for 13 loci on chromosome 10 was developed by determining the dosage of the corresponding DNA sequences in cell lines with unbalanced chromosome 10 rearrangements. Nine of the sequences were assigned to a smaller segment of the chromosome than previously and four sublocalizations were confirmed. The physical map covers most of chromosome 10, from 10p13 to 10q23. The linear order of loci within the physical map agrees with existing linkage maps of chromosome 10. A comparison between the physical map and existing genetic maps indicate an uneven distribution of recombination for chromosome 10. There appear to be hot spots of recombination in the regions defined by q21.1 and q22-q23. In addition, there is a suppression of recombination in the pericentromeric region in males which is not evident in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号