首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Septic shock is a life-threatening condition that results from exposure to bacterial endotoxin. It is manifested by cardiovascular collapse and mediated by the release of cytokines such as tumor necrosis factor. Some of these cytokines cause the release of vasoactive substances. In the present study, administration of 40 microgram/kg of bacterial endotoxin to dogs caused a 33% decrease in peripheral vascular resistance and a 54% fall in mean arterial blood pressure within 30 to 90 minutes. Vascular resistance and systemic arterial pressure returned to normal within 1.5 minutes after intravenous administration of NG-methyl-L-arginine (20 mg/kg), a potent and selective inhibitor of nitric oxide synthesis. L-Arginine reversed the effect of L-NMA and restored the endotoxin-induced hypotension. Although NG-methyl-L-arginine injection increased blood pressure in control dogs, the hypertensive effect was much greater in endotoxemic dogs (24.8 +/- 2.7 mmHg vs 47.8 +/- 6.8 mmHg, p = 0.01, n = 4). NG-Methyl-L-arginine caused only a modest increase in blood pressure in dogs made hypotensive by continuous intravenous infusion of nitroglycerin (17.1 +/- 5.0 mm Hg, n = 3). These findings suggest that nitric oxide overproduction is an important contributor to endotoxic shock. Moreover, our findings demonstrate for the first time, the utility of nitric oxide synthesis inhibitors in endotoxic shock and suggest that such inhibitors may be of therapeutic value in the treatment of septic shock.  相似文献   

2.
Septic shock is characterized by an increase in cardiac output and a fall in systemic vascular resistance index and mean arterial pressure. Endotoxin alters the smooth muscle function of blood vessels, probably by means of an increased production of the potent vasodilator nitric oxide (NO). The present study was accomplished to determine how the inhibition of NO synthesis influences cardiovascular performance in an ovine model of hyperdynamic endotoxemia. Endotoxemia was induced in five range ewes (41 +/- 2 kg) by continuous infusion of Escherichia coli endotoxin (LPS, 10 ng.kg-1.min-1) over the entire study period. After 24 h of LPS infusion, cardiac output increased from 5.2 +/- 0.3 to 7.9 +/- 0.6 (SE) 1/min (P less than 0.05) and mean arterial pressure and systemic vascular resistance index fell from 92 +/- 5 to 79 +/- 6 mmHg (P = 0.08) and from 1,473 +/- 173 to 824 +/- 108 dyn.s.cm-5.m2 (P less than 0.05), respectively. The pulmonary shunt fraction increased from 0.23 +/- 0.03 to 0.32 +/- 0.03 (P less than 0.05). The intravenous administration of the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (25 mg/kg) 24 h after the start of the LPS infusion changed these values to approximately baseline levels over the subsequent 4 h. Although N omega-nitro-L-arginine methyl ester increased pulmonary arterial pressure and pulmonary vascular resistance (P less than 0.05), right and left ventricular stroke volume index showed no significant changes. It is concluded that NO has a major function in cardiovascular performance in endotoxemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. L-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after L-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca(++) entry blocker isradipine also decreased pulmonary and systemic arterial pressure in L-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of L-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following L-NAME treatment are mediated by Rho kinase and Ca(++) entry through L-type channels, and that responses to L-NAME can be reversed by an NO donor.  相似文献   

4.
Hemodynamic alterations in liver cirrhosis   总被引:14,自引:0,他引:14  
In cirrhotic patients, portal hypertension is often associated with a hyperdynamic circulatory syndrome, with high cardiac output and reduced systemic vascular resistance and arterial pressure. The hyperdynamic circulatory syndrome is due to arterial vasodilation that mainly occurs in the splanchnic circulation, while vascular resistance in the other circulatory districts is normal or increased, accordingly with the degree of portal hypertension, liver impairment and activation of the renin-aldosterone and sympathetic nervous system. The mechanism(s) leading to splanchnic vasodilation is unclear. A favored hypothesis translocation of intestinal bacteria and/or some their products, such as endotoxin, into the interstitial space in the splanchnic organs results in the local release of vasodilating factors such as nitric oxide, carbon monoxide and others.  相似文献   

5.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

6.
Adrenergic agonists are known to influence bronchial blood flow and bronchovascular resistance. Recently, the nitrergic system has also been implicated in the control of bronchovascular tone. In this study, we compared the effects of the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) and the alpha(1)-receptor agonist phenylephrine on bronchovascular resistance in anesthetized sheep (n = 9). Bronchial blood flow, cardiac output, and systemic and pulmonary arterial pressures were continuously monitored. Phenylephrine (1.2-3.4 microg. kg(-1). min(-1)) was infused intravenously to increase mean systemic arterial pressure above 95 Torr for 10 min and then was discontinued. When hemodynamic parameters returned to baseline, nebulized phenylephrine (10 mg) was given over 10 min. When parameters again normalized, L-NAME (30 mg/kg) was infused intravenously over 1 min. Intravenous phenylephrine increased systemic vascular resistance by 40% at 10 min with no concurrent increase in bronchovascular resistance, but inhaled phenylephrine increased bronchovascular resistance by 66% at 10 min. By comparison, intravenous L-NAME produced a rapid and sustained fivefold increase in bronchovascular resistance at 10 min. We conclude that, although alpha-agonist stimulation has some influence on bronchovascular resistance in sheep, the nitrergic system has predominant control of bronchovascular tone.  相似文献   

7.
Nitric oxide is a major endothelium-derived vascular smooth muscle relaxing factor; its synthesis from L-arginine is selectively inhibited by L-NG-methylarginine. To assess whether basal nitric oxide release contributes to blood pressure regulation in vivo, we have investigated the cardiovascular effects of L-NG-methylarginine in the anesthetized guinea pig. L-NG-methylarginine (0.1-10 mg/kg, i.v. bolus) elicited a sustained, dose-dependent, increase in arterial pressure and a moderate bradycardia. L-arginine (30 mg/kg i.v.) prevented or reversed the pressor effect of L-NG-methylarginine, while atropine (2 mg/kg) abolished the associated bradycardia. In contrast, L-arginine did not attenuate the pressor effect of norepinephrine or angiotensin. Our findings suggest that basal nitric oxide production is sufficient to modulate peripheral vascular resistance; hence nitric oxide may play a role in arterial pressure homeostasis.  相似文献   

8.
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.  相似文献   

9.
The endogenous cannabinoid anandamide causes hypotension and mesenteric arteriolar dilation. A detailed analysis of its effects on systemic and portal venous hemodynamics had not yet been performed. We assessed the effects of anandamide (0.4-10 mg/kg) on systemic and portal hemodynamics with and without prior treatment with various antagonists. The specific antagonists used included SR-141716A, N(omega)-nitro-L-arginine methyl ester, indomethacin, and nordihydroguaiaretic acid. Anandamide produced a dose-dependent decrease in mean arterial pressure due to a drop in systemic vascular resistance (SVR) that was accompanied by a compensatory rise in cardiac output. Anandamide also elicited an increase in both portal venous flow and pressure, along with a decline in mesenteric vascular resistance (MVR). Pretreatment with 3 mg/kg SR-141716A, a CB(1) antagonist, prevented the decline of SVR and MVR from the lower dose of anandamide. Antagonism of nitric oxide synthetase, cyclooxygenase, or 5-lipoxygenase did not prevent the systemic nor the portal hemodynamic effects of anandamide. Furthermore, the use of R-methanandamide, a stable analog of anandamide, produced similar hemodynamic effects on the mesenteric vasculature, thereby implying that the effects of anandamide are not related to its breakdown products. Anandamide produced profound, dose-dependent alterations in both the systemic and portal circulations that could be at least partially blocked by pretreatment with SR-141716A.  相似文献   

10.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

11.
实验在麻醉狗中进行。静脉内匀速注射硝普钠时,平均动脉压和左心室收缩压明显降低,左心室dp/dt_(max)、-dp/dt_(max)和心力环面积均明显减小。此时电刺激一侧腓深神经可使动脉血压和左心室收缩压明显升高,dp/dt_(max)和心力环面积也显著增加。停止刺激后,动脉血压和左心室收缩压逐渐回向刺激前的水平。停止注射硝普钠5~15分钟后,上述各项观察指标基本恢复到注药前的水平。在用大肠杆菌内毒素造成休克的狗中,电刺激一侧腓深神经,也能使平均动脉压和左心室收缩压升高,同时dp/dt_(max)、-dp/dt_(max)和肠系膜血管阻力明显增高,但肾血管阻力增加不明显。本实验结果与以往的实验资料一起表明,在用扩血管药造成低血压时,躯体神经刺激引起的升压效应似乎以心肌收缩力增加为主;而在内毒素休克时,躯体神经刺激可通过改善心肌收缩功能和增加内脏血管阻力而引起升压作用。  相似文献   

12.
The effects of endothelin on renal hemodynamics and excretory functions were investigated in anesthetized dogs. Infusion of endothelin at a rate of 1 ng/kg.min resulted in a slight but significant decrease in renal blood flow and an increase in renal vascular resistance and filtration fraction. Endothelin at doses higher than 10 ng/kg.min significantly decreased cardiac output, glomerular filtration rate, urine volume, and urinary sodium and potassium excretion, whereas it increased systemic vascular resistance. Mean arterial pressure and heart rate showed a transient decrease and increase, respectively, at doses higher than 50 ng/kg.min. Plasma renin activity and plasma aldosterone concentrations were increased only at the dose of 100 ng/kg.min. These effects lasted for more than 60 min. These results suggest that endothelin may have an important role in the modulation of renal functions as well as in the modulation of systemic hemodynamics.  相似文献   

13.
The purpose of this project was to collate canine cardiopulmonary measurements from published and unpublished studies in our laboratory in 97 instrumented, unsedated, normovolemic dogs. Body weight; arterial and mixed-venous pH and blood gases; mean arterial, pulmonary arterial, pulmonary artery occlusion, and central venous blood pressures; cardiac output; heart rate; hemoglobin; and core temperature were measured. Body surface area; bicarbonate concentration; base deficit; cardiac index; stroke volume index, systemic and pulmonary vascular resistance indices; left and right cardiac work indices; alveolar partial pressure of oxygen (pO2) ; alveolar-arterial pO2 gradient (A-apO2); arterial, mixed-venous, and pulmonary capillary oxygen content; oxygen delivery; oxygen consumption; oxygen extraction; venous admixture; arterial and mixed-venous blood CO2 contents; and CO2 production were calculated. In the 97 normal, resting dogs, mean arterial and mixed-venous pH were 7.38 and 7.36, respectively; partial pressure of carbon dioxide (pCO2), 40.2 and 44.1 mm Hg, respectively; base-deficit, -2.1 and -1.9 mEq/liter, respectively; pO2, 99.5 and 49.3 mm Hg, respectively; oxygen content, 17.8 and 14.2 ml/dl, respectively; A-a pO2 was 6.3 mm Hg; and venous admixture was 3.6%. The mean arterial blood pressure (ABPm), mean pulmonary arterial blood pressure (PAPm), pulmonary artery occlusion pressure (PAOP) were 103, 14, and 5.5 mm Hg, respectively; heart rate was 87 beats/min; cardiac index (CI) was 4.42 liters/min/m2; systemic and pulmonary vascular resistances were 1931 and 194 dynes.sec.cm-5, respectively; oxygen delivery, consumption and extraction were 790 and 164 ml/min/m2 and 20.5%, respectively. This study represents a collation of cardiopulmonary values obtained from a large number of dogs (97) from a single laboratory using the same measurement techniques.  相似文献   

14.
This study evaluated the effects of progressive nitric oxide (NO) inhibition in the regulation of systemic and regional hemodynamics and renal function in anesthetized dogs. The N(G)-nitro-L-arginine methyl ester group (n = 9) received progressive doses of 0.1, 1, 10, and 50 microg. kg(-1). min(-1). Renal (RBF), mesenteric (MBF), iliac (IBF) blood flows, mean arterial pressure (MAP), pulmonary pressures, cardiac output (CO), and systemic and pulmonary vascular resistances were measured. During N(G)-nitro-L-arginine methyl ester infusion, MAP and systemic vascular resistances increased in a dose-dependent manner. Mean pulmonary pressure and pulmonary vascular resistances increased in both the N(G)-nitro-L-arginine methyl ester and the control group, but the increase was more marked in the N(G)-nitro-L-arginine methyl ester group during the last two infusion periods. CO decreased progressively, before any significant change in blood pressure was noticeable in the N(G)-nitro-L-arginine methyl ester group. IBF decreased significantly from the first N(G)-nitro-L-arginine methyl ester dose, whereas RBF and MBF only decreased significantly during the highest N(G)-nitro-L-arginine methyl ester dose. Urinary volume and sodium excretion only increased significantly in the time control group during the two last time periods. The pulmonary vasculature was more sensitive than the systemic vasculature, whereas skeletal muscle and renal vasculatures showed a greater sensitivity to the inhibition of NO production than the mesenteric vasculature. NO synthesis inhibition induces a progressive antidiuretic and antinatriuretic effect, which is partially offset by the increase in blood pressure.  相似文献   

15.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Recent reports indicate that under certain restricted conditions hyperoxia may decrease tissue O2 consumption. However, this effect has not been established for whole body O2 consumption in the intact healthy conscious state. The goal of the present study was to document the effect of hyperoxia on resting whole body O2 consumption and hemodynamics under these latter more general physiological conditions. The inspired gas was delivered by mask to six fasted resting conscious dogs and alternated hourly between air and O2-enriched air (hyperoxia) for 5 h, while hemodynamics and blood gas data were obtained every 20 min. Compared with air breathing, hyperoxia increased the mean arterial O2 tension from 95 to 475 Torr and decreased heart rate, cardiac output, pulmonary vascular resistance, and right and left ventricular work rates and thus, presumably, myocardial O2 consumption. Hyperoxia also increased systemic vascular resistance and right atrial pressure but did not change stroke volume or systemic arterial pressure. The increase in arterial O2 content during hyperoxia was counterbalanced by the decrease in cardiac output, so that O2 delivery was unchanged by hyperoxia. Surprisingly, hyperoxia decreased the arterial-to-mixed venous difference in O2 content; this decrease together with the decrease in cardiac output produced a decrease in resting whole body O2 consumption from 5.88 +/- 0.68 to 4.80 +/- 0.62 ml O2.min-1.kg-1 (P = 0.0002). It is concluded that under physiological conditions normobaric hyperoxia may decrease metabolic rate in addition to cardiac output, which may have important implications for the metabolic regulation of O2 utilization as well as for the medical and nonmedical uses of O2.  相似文献   

17.
Five chronically instrumented healthy dogs were exposed to a 5-day period of breathing 10% oxygen in a chamber. The response to hypoxia was found to be time dependent. During the first 24 h of hypoxia the circulatory response was characterized by increases in cardiac output, heart rate, pulmonary and systemic arterial blood pressures, and pulmonary vascular resistance. Systemic vascular resistance increased; left atrial pressure decreased. During the early part of hypoxia the animals became hypocapnic; the arterial blood pH rose significantly. During the rest of the hypoxic period cardiac output, heart rate, and arterial blood pH returned to the control values; pulmonary and systemic arterial pressures and pulmonary vascular resistance remained significantly elevated. Systemic vascular resistance rose; left atrial pressure remained below control. This response to hypoxia was not substantially modified when the experiment was repeated during the administration of the antihistamine promethazine, an H1-receptor blocking agent, in a dose which blocked the pulmonary vasoconstrictor response to small doses of exogenous histamine. The circulatory response to acute hypoxia in five anesthetized dogs was not modified by intravenous administration of metiamide, an H2-receptor blocking agent.  相似文献   

18.
The effects of vanadate on cardiovascular function and on the secretion of renin and vasopressin were investigated by infusing sodium orthovanadate (0.32 mu mole/kg X min) intravenously into five conscious dogs. Vanadate caused significant increases in mean arterial pressure, total peripheral resistance, pulmonary arterial pressure, and cardiac output. These data illustrate that the hemodynamic effects of vanadate in the conscious dog are similar to those of the anesthetized dog but that minor differences do exist. Vanadate significantly suppressed plasma renin activity, but plasma vasopressin was unchanged. The effects of vanadate also were investigated in the same dogs on another day after administration of the calcium channel blocker, verapamil (0.3 mg/kg bolus + 0.01 mg/kg X min). After calcium channel blockade, the increases in arterial pressure and pulmonary arterial pressure induced by vanadate were attenuated, and cardiac output did not increase. Calcium channel blockade also prevented the vanadate-induced decrease in plasma renin activity. These data suggest that the cardiovascular and humoral alterations produced by vanadate in the conscious dog are at least partially mediated by changes in intracellular calcium.  相似文献   

19.
Cocaine or air jet stress evokes pressor responses due to either a large increase in systemic vascular resistance (vascular responders) or small increases in both cardiac output and vascular resistance (mixed responders) in conscious rats. Repeated cocaine administration results in elevated arterial pressure in vascular responders but not in mixed responders. The present study examined the hypothesis that the pattern of cardiovascular responses to an unconditioned stimulus (UCS; air jet) is related to responses to a conditioned stimulus (CS; tone followed by brief foot shock) in individual rats. Our data demonstrate that presentation of the UCS produced variable cardiac output responses that correlated with responses to the CS (n = 60). We also determined whether individual cardiovascular response patterns to acute stress correlated with predisposition to a sustained stress-induced elevation in arterial pressure. Rats were exposed to three different stressors presented one per day successively for 4 wk and during a poststress period of 3 wk while arterial pressure was recorded periodically. Mean arterial pressure was elevated in all rats during chronic stress but, during the poststress period, remained at significantly higher levels in vascular responders but not mixed responders. Therefore, we conclude that acute behavioral stress to a conditioned stimulus elicits variable hemodynamic responses that predict the predisposition to a sustained stress-induced elevation in arterial pressure.  相似文献   

20.
The effects of python neuropeptide gamma (NPgamma) on hemodynamic parameters have been investigated in the anesthetized ball python (Python regius). Bolus intra-arterial injections of synthetic python NPgamma (1-300 pmol kg-1) produced a dose-dependent decrease in systemic arterial blood pressure (Psys) concomitant with increases in systemic vascular conductance (Gsys), total cardiac output and stroke volume, but only minor effects on heart rate. The peptide had no significant effect on pulmonary arterial blood pressure (Ppul) and caused only a small increase in pulmonary conductance (Gpul) at the highest dose. In the systemic circulation, the potency of the NK1 receptor-selective agonist [Sar9,Met(0(2))11] substance P was >100-fold greater than the NK2 receptor-selective agonist [betaAla8] neurokinin A-(4-10)-peptide suggesting that the python cardiovascular system is associated with a receptor that resembles the mammalian NK1 receptor more closely than the NK2 receptor. Administration of the inhibitor of nitric oxide synthesis, L-nitro-arginine-methylester (L-NAME; 150 mg kg-1), resulted in a significant (P<0.05) increase in Psys as well as a decrease in Gsys, but no effect on Ppul and Gpul. Conversely, the nitric oxide donor, sodium nitroprusside (SNP; 60 microg kg-1) produced a significant (P<0.05) decrease in Psys along with an increase in Gsys and pulmonary blood flow. However, neither L-NAME nor indomethacin (10 mg kg-1) reduced the cardiovascular responses to NPgamma. Thus, nitric oxide is involved in regulation of basal vascular tone in the python, but neither nitric oxide nor prostaglandins mediate the vasodilatory action of NPgamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号