首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration.  相似文献   

3.
HS1 is an actin regulatory protein and cortactin homolog that is expressed in hematopoietic cells. Antigen receptor stimulation induces HS1 phosphorylation, and HS1 is essential for T cell activation. HS1 is also expressed in neutrophils; however, the function of HS1 in neutrophils is not known. Here we show that HS1 localizes to the neutrophil leading edge, and is phosphorylated in response to the chemoattractant formyl-Met-Leu-Phe (fMLP) in adherent cells. Using live imaging in microchannels, we show that depletion of endogenous HS1 in the neutrophil-like PLB-985 cell line impairs chemotaxis. We also find that HS1 is necessary for chemoattractant-induced activation of Rac GTPase signaling and Vav1 phosphorylation, suggesting that HS1-mediated Rac activation is necessary for efficient neutrophil chemotaxis. We identify specific phosphorylation sites that mediate HS1-dependent neutrophil motility. Expression of HS1 Y378F, Y397F is sufficient to rescue migration of HS1-deficient neutrophils, however, a triple phospho-mutant Y222F, Y378F, Y397F did not rescue migration of HS1-deficient neutrophils. Moreover, HS1 phosphorylation on Y222, Y378, and Y397 regulates its interaction with Arp2/3. Collectively, our findings identify a novel role for HS1 and its phosphorylation during neutrophil directed migration.  相似文献   

4.
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-γ associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.  相似文献   

5.
Vav2 is a member of the Vav family that serves as a guanine nucleotide exchange factor for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the epidermal growth factor (EGF) receptor; however, the mechanism by which Vav2 is activated in EGF-treated cells is unclear. By the means of an in vitro protein kinase assay, we show here that purified and activated EGF receptor phosphorylates Vav2 exclusively on its N-terminal domain. Furthermore, EGF receptor phosphorylates Vav2 on all three possible phosphorylation sites, Tyr-142, Tyr-159, and Tyr-172. In intact cells we also show that Vav2 associates with the activated EGF receptor in an Src homology 2 domain-dependent manner, with Vav2 Src homology 2 domain binding preferentially to autophosphorylation sites Tyr-992 and Tyr-1148 of the EGF receptor. Treatment of cells with EGF results in stimulation of exchange activity of Vav2 as measured on Rac; however, the intensity of the exchange activity does not show any correlation with the level of Vav2 tyrosine phosphorylation. Introducing a point mutation into the Vav2 pleckstrin homology domain or treatment of cells with the phosphatidylinositol 3-kinase inhibitor LY294002 prior to EGF stimulation inhibits Vav2 exchange activity. Although phosphorylation mutants of Vav2 can readily induce actin rearrangement in COS7 cells, pleckstrin homology domain mutant does not stimulate membrane ruffling. These results suggest that EGF regulates Vav2 activity basically through phosphatidylinositol 3-kinase activation, whereas tyrosine phosphorylation of Vav2 may rather be necessary for mediating protein-protein interactions.  相似文献   

6.
This study examined the upstream signaling pathways initiated by muscarinic m2 and m3 receptors that mediate sustained ERK1/2- and p38 MAP kinase-dependent phosphorylation and activation of the 85-kDa cytosolic phospholipase (cPL)A(2) in smooth muscle. The pathway initiated by m2 receptors involved sequential activation of Gbetagamma(i3), phosphatidylinositol (PI)3-kinase, Cdc42, and Rac1, p21-activated kinase (PAK1), p38 mitogen-activated protein (MAP) kinase, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (61 +/- 5 to 72 +/- 4%) by the m2 antagonist methoctramine, Gbeta antibody, pertussis toxin, the PI3-kinase inhibitor LY 294002, PAK1 antibody, the p38 MAP kinase inhibitor SB-203580, and a Cdc42/Rac1 GEF (Vav2) antibody and by coexpression of dominant-negative Cdc42 and Rac1 mutants. The pathway initiated by m3 receptors involved sequential activation of Galpha(q), PLC-beta1, PKC, ERK1/2, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (35 +/- 3 to 41 +/- 5%) by the m3 antagonist 4-diphenylacetoxy-N-methylpiperdine (4-DAMP), the phosphoinositide hydrolysis inhibitor U-73122, the PKC inhibitor bisindolylmaleimide, and the ERK1/2 inhibitor PD 98059. cPLA(2) activity was not affected in cells coexpressing dominant-negative RhoA and PLC-delta1 mutants, implying that PKC was not derived from phosphatidylcholine hydrolysis. The effects of ERK1/2 and p38 MAP kinase on cPLA(2) activity were additive and accounted fully for activation and phosphorylation of cPLA(2).  相似文献   

7.
Integrin alpha(v)beta(3)-mediated adhesion of hematopoietic cells to vitronectin results in activation of the Rho GTPases. Mutation of beta(3) tyrosine residue 747, previously shown to disrupt cell adhesion, results in sustained activation of Cdc42 and diminished Rac and Rho activity. We investigated the role of the hematopoietically restricted guanine nucleotide exchange factor Vav1 in alpha(v)beta(3)-mediated adhesion. We find that Vav1, a guanine nucleotide exchange factor for Rac and Rho, associates with alpha(v)beta(3) upon cell adhesion to vitronectin and that this association requires beta(3) tyrosine phosphorylation. Expression of exogenous Vav1 demonstrates that Y160F, but not wild type or the Vav1Y174F mutant, inhibits Rac and Rho activation during alpha(v)beta(3)-mediated cell adhesion to vitronectin. Cells expressing Vav1Y160F exhibit a sustained Cdc42 activation similar to nonphosphorylatable beta(3) mutants. In addition, cytoskeletal reorganization and cell adhesion are severely suppressed in Vav1Y160F-transfected cells, and Vav1Y160F fails to associate with beta(3) integrins. Furthermore, Vav1 itself is selectively phosphorylated upon tyrosine 160 after alpha(v)beta(3)-mediated adhesion, and the association between Vav1 and beta(3) occurs in specific response to adhesion to substrate. These studies describe a phosphorylation-dependent association between beta(3) integrin and Vav1 which is essential for cell progression to a Rho-dominant phenotype during cell adhesion.  相似文献   

8.
The Rho GTPase Rac regulates actin cytoskeleton reorganization to form cell surface extensions (lamellipodia) required for cell migration/invasion during cancer metastasis. Rac hyperactivation and overexpression are associated with aggressive cancers; thus, interference of the interaction of Rac with its direct upstream activators, guanine nucleotide exchange factors (GEFs), is a viable strategy for inhibiting Rac activity. We synthesized EHop-016, a novel inhibitor of Rac activity, based on the structure of the established Rac/Rac GEF inhibitor NSC23766. Herein, we demonstrate that EHop-016 inhibits Rac activity in the MDA-MB-435 metastatic cancer cells that overexpress Rac and exhibits high endogenous Rac activity. The IC(50) of 1.1 μM for Rac inhibition by EHop-016 is ~100-fold lower than for NSC23766. EHop-016 is specific for Rac1 and Rac3 at concentrations of ≤5 μM. At higher concentrations, EHop-016 inhibits the close homolog Cdc42. In MDA-MB-435 cells that demonstrate high active levels of the Rac GEF Vav2, EHop-016 inhibits the association of Vav2 with a nucleotide-free Rac1(G15A), which has a high affinity for activated GEFs. EHop-016 also inhibits the Rac activity of MDA-MB-231 metastatic breast cancer cells and reduces Rac-directed lamellipodia formation in both cell lines. EHop-016 decreases Rac downstream effects of PAK1 (p21-activated kinase 1) activity and directed migration of metastatic cancer cells. Moreover, at effective concentrations (<5 μM), EHop-016 does not affect the viability of transformed mammary epithelial cells (MCF-10A) and reduces viability of MDA-MB-435 cells by only 20%. Therefore, EHop-016 holds promise as a targeted therapeutic agent for the treatment of metastatic cancers with high Rac activity.  相似文献   

9.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.  相似文献   

10.
Vav works as a GDP/GTP exchange factor for Rac GTPases, thereby facilitating the transition of these proteins from the inactive (GDP-bound) into the active (GTP-bound) state. The stimulation of Vav exchange activity during cell signaling is mediated by tyrosine phosphorylation. To understand the roles of phosphorylation in the regulation of Vav activity, we have initiated the characterization of the residues of Vav that are phosphorylated during signal transduction. Here we show that a Y-to-F mutation in one of these residues, Y174, leads to the oncogenic activation of Vav and to the enhancement of other Vav-mediated signals such as those for cytoskeletal reorganization, JNK activation, and stimulation of the nuclear factor of activated T cells. The effect induced by the Y174F mutation is further accentuated by mutations in residue Y142 or Y160. The Y174F mutation has no effect on the exchange activity of Vav in vitro but results in higher levels of phosphorylation in vivo. Using a phosphospecific antibody, we found that Y174 is phosphorylated following stimulation of mitogenic and antigenic receptors. This phosphorylation event is conserved in Vav-2 and Vav-3, the other two members of the Vav family. These results identify a previously unknown mechanism for the oncogenic activation of Vav and suggest that the activity of this exchange factor is modulated by two antagonistic phosphorylation events, one involved in Vav activation and a second one implicated in Vav inactivation.  相似文献   

11.
There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer.In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells.Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells.  相似文献   

12.
Treatment of cells with epidermal growth factor (EGF) promotes the activation of the small GTP-binding protein Cdc42, as well as its phosphorylation in cells. The EGF-dependent phosphorylation of Cdc42 occurs at tyrosine 64 in the Switch II domain and appears to be mediated through the Src tyrosine kinase, because both the expression of a dominant-negative Src mutant (mouse Src(K297R)) and treatment of cells with the Src kinase inhibitor PP2 blocks the EGF-stimulated phosphorylation of Cdc42, whereas expression of an activated Src mutant (Src(Y529F)) promotes phosphorylation in the absence of EGF treatment. The EGF-stimulated phosphorylation of Cdc42 is not required for its activation, nor does it directly affect the interactions of activated Cdc42 with target/effector proteins including PAK, ACK, WASP, or IQGAP. However, the EGF-stimulated phosphorylation of Cdc42 is accompanied by an enhancement in the interaction of Cdc42 with the Rho-GDP dissociation inhibitor (RhoGDI). The EGF-stimulated activation of Cdc42 does require activated Src, as well as the Vav2 protein, a member of the Dbl family of guanine nucleotide exchange factors. Src catalyzes the tyrosine phosphorylation of Vav2, and overexpression of Vav2 together with activated Src (Src(Y529F)) can completely bypass the need for EGF to promote the activation of Cdc42. Thus, EGF signaling through Src appears to have dual regulatory effects on Cdc42: 1). it leads to the activation of Cdc42 as mediated by the Vav2 guanine nucleotide exchange factor, and 2). it results in the phosphorylation of Cdc42, which stimulates the binding of RhoGDI, perhaps to direct the movement of Cdc42 to a specific cellular site to trigger a signaling response, because Cdc42-RhoGDI interactions are essential for Cdc42-induced cellular transformation.  相似文献   

13.
Alterations of T-cell receptor signaling by human immunodeficiency virus type 1 (HIV-1) Nef involve its association with a highly active subpopulation of p21-activated kinase 2 (PAK2) within a dynamic signalosome assembled in detergent-insoluble membrane microdomains. Nef-PAK2 complexes contain the GTPases Rac and Cdc42 as well as a factor providing guanine nucleotide exchange factor (GEF) activity for Rac/Cdc42. However, the identity of this GEF has remained controversial. Previous studies suggested the association of Nef with at least three independent GEFs, Vav, DOCK2/ELMO1, and βPix. Here we used a broad panel of approaches to address which of these GEFs is involved in the functional interaction of Nef with PAK2 activity. Biochemical fractionation and confocal microscopy revealed that Nef recruits Vav1, but not DOCK2/ELMO1 or βPix, to membrane microdomains. Transient RNAi knockdown, analysis of cell lines defective for expression of Vav1 or DOCK2 as well as use of a βPix binding-deficient PAK2 variant confirmed a role for Vav1 but not DOCK2 or βPix in Nef's association with PAK2 activity. Nef-mediated microdomain recruitment of Vav1 occurred independently of the Src homology 3 domain binding PxxP motif, which is known to connect Nef to many cellular signaling processes. Instead, a recently described protein interaction surface surrounding Nef residue F195 was identified as critical for Nef-mediated raft recruitment of Vav1. These results identify Vav1 as a relevant component of the Nef-PAK2 signalosome and provide a molecular basis for the role of F195 in formation of a catalytically active Nef-PAK2 complex.  相似文献   

14.
In a previous study (Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., Bokoch, G. M., and Kim, E. G. (2002) J. Biol. Chem. 277, 44417-44430) we reported that phosphorylation of p85 betaPIX, a guanine nucleotide exchange factor (GEF) for Rac1/Cdc42, is a signal for translocation of the PIX complex to neuronal growth cones and is associated with basic fibroblast growth factor (bFGF)-induced neurite outgrowth. However, the issue of whether p85 betaPIX phosphorylation affects GEF activity on Rac1/Cdc42 is yet to be explored. Here we show that Rac1 activation occurs in a p85 betaPIX phosphorylation-dependent manner. A GST-PBD binding assay reveals that Rac1 is activated in a dose- and time-dependent manner in PC12 cells in response to bFGF. Inhibition of ERK or PAK2, the kinases upstream of p85 betaPIX in the bFGF signaling, prevents Rac1 activation, suggesting that phosphorylation of p85 betaPIX functions upstream of Rac1 activation. To directly address this issue, transfection studies with wild-type and mutant p85 betaPIX (S525A/T526A, a non-phosphorylatable form) were performed. Expression of mutant PIX markedly inhibits both bFGF- and nerve growth factor (NGF)-induced activation of Rac1, indicating that phosphorylation of p85 betaPIX is responsible for activation of this G protein. Both wild-type and mutant p85 betaPIX displaying negative GEF activity (L238R/L239S) are similarly recruited to growth cones, suggesting that Rac1 activation is not essential for translocation of the PIX complex (PAK2-p85 betaPIX-Rac1). However, expression of mutant p85 betaPIX (L238R/L239S) results in retraction of the pre-existing neurites. Our results provide evidence that bFGF- and NGF-induced phosphorylation of p85 betaPIX mediates Rac1 activation, which in turn regulates cytoskeletal reorganization at growth cones, but not translocation of the PIX complex.  相似文献   

15.
Lysophosphatidic acid (LPA) has been shown to be a potent mitogen for vascular smooth muscle cells. Src-dependent transactivation of receptor tyrosine kinases has been previously demonstrated to mediate LPA-induced activation of MAP kinase ERK1/2. Furthermore, generation of reactive oxygen species (ROS) by LPA is also known to contribute to MAP kinase activation. Rho family small G-proteins Rac and Cdc42, and their immediate downstream effector p21-activated kinase (PAK), have been demonstrated to mediate important effects on the cytoskeleton that are relevant for cell migration and proliferation. In the present report we evaluated stimulation of PAK by LPA in rat aortic vascular smooth muscle cells (VSMC) by PAK immunocomplex MBP in-gel kinase assay. LPA increased PAK activity 3-fold, peaking at 5 min and showing sustained activation up to 45 min. Inhibition of tyrosine kinases by pretreatment of VSMC with genistein or specific inhibition of Src by PP1 greatly diminished LPA-induced PAK activation, whereas specific inhibition of PDFG- and EGF receptor kinase by tyrphostin AG1296 and AG1478 had no effect. Furthermore, inhibition of Galpha(i) by pertussis toxin and inhibition of NADH/NADPH oxidase by diphenylene iodonium also diminished LPA-induced stimulation of PAK. This is the first study to demonstrate that LPA activates PAK. In VSMC, PAK activation by LPA is mediated by Galpha(i) and is dependent on Src, whereas EGF- or PDGF receptor transactivation are not involved. Furthermore, generation of ROS is required for LPA-induced activation of PAK.  相似文献   

16.
Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration.  相似文献   

17.
Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.  相似文献   

18.
EphA2 is a member of the Eph family of receptor tyrosine kinases. EphA2 mediates cell-cell communication and plays critical roles in a number of physiological and pathologic responses. We have previously shown that EphA2 is a key regulator of tumor angiogenesis and that tyrosine phosphorylation regulates EphA2 signaling. To understand the role of EphA2 phosphorylation, we have mapped phosphorylated tyrosines within the intracellular region of EphA2 by a combination of mass spectrometry analysis and phosphopeptide mapping using two-dimensional chromatography in conjunction with site-directed mutagenesis. The function of these phosphorylated tyrosine residues was assessed by mutational analysis using EphA2-null endothelial cells reconstituted with EphA2 tyrosine-to-phenylalanine or tyrosine-to-glutamic acid substitution mutants. Phosphorylated Tyr(587) and Tyr(593) bind to Vav2 and Vav3 guanine nucleotide exchange factors, whereas Tyr(P)(734) binds to the p85 regulatory subunit of phosphatidylinositol 3-kinase. Mutations that uncouple EphA2 with Vav guanine nucleotide exchange factors or p85 are defective in Rac1 activation and cell migration. Finally, EphA2 mutations in the juxtamembrane region (Y587F, Y593F, Y587E/Y593E), kinase domain (Y734F), or SAM domain (Y929F) inhibited ephrin-A1-induced vascular assembly. In addition, EphA2-null endothelial cells reconstituted with these mutants were unable to incorporate into tumor vasculature, suggesting a critical role of these phosphorylation tyrosine residues in transducing EphA2 signaling in vascular endothelial cells during tumor angiogenesis.  相似文献   

19.
p21-activated kinases (PAKs) were the first identified mammalian members of a growing family of Ste20-like serine–threonine protein kinases. In this study, we show that PAK1 can be stimulated by carbachol, lysophosphatidic acid (LPA), epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) by multiple independent and overlapping pathways. Dominant-negative Ras, Rac, and Cdc42 inhibited PAK1 activation by all of these agonists, while active Rac1 and Cdc42 were sufficient to maximally activate PAK1 in the absence of any treatment. Active Ras induced only a weak activation of PAK1 that could be potentiated by muscarinic receptor stimulation. Studies using inhibitors of the EGF receptor tyrosine kinase, phosphatidylinositol 3-kinase (PI3-kinase) and protein kinase C (PKC) revealed that all of the cell surface agonists could activate PAK1 through pathways independent of PKC, that EGF stimulated a PI3-kinase dependent pathway to stimulate PAK1, and that muscarinic receptor stimulation of PAK1 was predominantly mediated through this EGF-R-dependent mechanism. Activation of PAK1 by LPA was independent of PI3-kinase and the EGF receptor, but was inhibited by dominant-negative RhoA. These results identify multiple Ras-dependent pathways to activation of PAK1.  相似文献   

20.
Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2-/- Vav3-/- mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号