首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner.  相似文献   

2.
Several independent lines of evidence indicate that interferon-mediated innate responses are involved in controlling herpes simplex virus type 1 (HSV-1) infection and that the viral immediate-early regulatory protein ICP0 augments HSV-1 replication in interferon-treated cells. However, this is a complex situation in which the experimental outcome is determined by the choice of multiplicity of infection and cell type and by whether cultured cells or animal models are used. It is now known that neither STAT1 nor interferon regulatory factor 3 (IRF-3) play essential roles in the replication defect of ICP0-null mutant HSV-1 in cultured cells. This study set out to investigate the specific role of ICP0 in HSV-1 resistance to the interferon defense. We have used a cell line in which ICP0 expression can be induced at levels similar to those during the early stages of a normal infection to determine whether ICP0 by itself can interfere with interferon or IRF-3-dependent signaling and whether ICP0 enables the virus to circumvent the effects of interferon-stimulated genes (ISGs). We found that the presence of ICP0 was unable to compromise ISG induction by either interferon or double-stranded RNA. On the other hand, ICP0 preexpression reduced but did not eliminate the inhibitory effects of ISGs on HSV-1 infection, with the extent of the relief being highly dependent on multiplicity of infection. The results are discussed in terms of the relationships between ICP0 and intrinsic and innate antiviral resistance mechanisms.The innate immune response mediated through the interferon (IFN) pathway is an important component of antiviral defense mediated by individual cells and whole organisms (10, 28). In turn, many viruses express proteins that counteract the effects of the IFN response (28). In the case of herpes simplex virus type 1 (HSV-1), highly defective HSV-1 mutants activate expression of IFN-stimulated genes (ISGs) through a mechanism that is independent of IFN itself but dependent on IFN regulatory factor 3 (IRF-3) (2, 3, 19, 23, 26). HSV-1 mutants that do not express the immediate-early (IE) regulatory protein ICP0 are more sensitive than the wild-type (wt) virus to IFN pretreatment of cultured cells (13, 20), and ICP0-null mutant HSV-1 is much more pathogenic in mice unable to respond to IFN (12, 15). Furthermore, a number of experimental systems have presented evidence suggesting that a specific function of ICP0 is to interfere with IFN and/or IRF-3-dependent IFN responses (3, 16-18, 21). However, we have reported recently that the replication defect of ICP0-null mutant HSV-1 is not complemented in cultured cells lacking either STAT1 or IRF-3 (9), which raises the question of whether the relative sensitivity of ICP0-null mutant HSV-1 to an IFN-induced antiviral state results from the absence of a specific effect of ICP0 on IFN pathways or is, rather, an indirect consequence of the disabled virus being intrinsically less able to replicate in cells expressing ISGs (9).The investigation of these complex issues is difficult because sensitivity to IFN is highly dependent on multiplicity of infection (MOI) (9) and cell type (20). Therefore, we sought to develop a system in which the specific effects of ICP0 could be examined in the absence of HSV-1 infection and which avoids potential complications arising from the use of viral vectors or plasmid transfection technologies. In an accompanying paper, we describe the construction of a cell line that expresses ICP0 at physiological levels in an inducible manner (7). The cells allow 100% complementation of plaque formation by ICP0-null mutant HSV-1, and induction of ICP0 expression induces efficient reactivation of gene expression from quiescent HSV-1 genomes (7). We have used these cells to investigate whether, by itself, ICP0 is able to impede induction of ISGs in response to IFN (through the normal STAT1 signaling pathway) or to interfere with IRF-3-dependent activation of ISGs induced by double-stranded RNA, the archetypal pathogen-associated molecular pattern (PAMP). We found that preexpression of ICP0 had no deleterious effect on either pathway. On the other hand, preexpression of ICP0 decreased (but did not eliminate) the sensitivity of HSV-1 to an IFN-induced antiviral state. We discuss the relationship between ICP0 and intrinsic and innate cellular defenses to HSV-1 infection.  相似文献   

3.
Herpes simplex virus 1 (HSV-1) ICP0 mutants are interferon-sensitive, avirulent, and elicit protective immunity against HSV-1 (Virol J, 2006, 3:44). If an ICP0 mutant of herpes simplex virus 2 (HSV-2) exhibited similar properties, such a virus might be used to vaccinate against genital herpes. The current study was initiated to explore this possibility. Several HSV-2 ICP0 mutant viruses were constructed and evaluated in terms of three parameters: i. interferon-sensitivity; ii. virulence in mice; and iii. capacity to elicit protective immunity against HSV-2. One ICP0 mutant virus in particular, HSV-2 0ΔNLS, achieved an optimal balance between avirulence and immunogenicity. HSV-2 0ΔNLS was interferon-sensitive in cultured cells. HSV-2 0ΔNLS replicated to low levels in the eyes of inoculated mice, but was rapidly repressed by an innate, Stat 1-dependent host immune response. HSV-2 0ΔNLS failed to spread from sites of inoculation, and hence produced only inapparent infections. Mice inoculated with HSV-2 0ΔNLS consistently mounted an HSV-specific IgG antibody response, and were consistently protected against lethal challenge with wild-type HSV-2. Based on their avirulence and immunogenicity, we propose that HSV-2 ICP0 mutant viruses merit consideration for their potential to prevent the spread of HSV-2 and genital herpes.  相似文献   

4.
5.
6.
7.
8.
In cell culture experiments, phosphorylation appears to be a critical regulator of the herpes simplex virus 1 (HSV-1) immediate-early (IE) protein, ICP0, which is an E3 ubiquitin ligase that transactivates viral gene expression. Three major regions of phosphorylation in ICP0 (amino acids 224 to 232, 365 to 371, and 508 to 518) have been identified, and mutant viruses that block phosphorylation sites within each region (termed Phos 1, 2, and 3, respectively) have been constructed. Previous studies indicated that replication of Phos 1 is significantly reduced compared to that of wild-type virus in cell culture (C. Boutell, et al., J. Virol. 82:10647-10656, 2008). To determine the effects these phosphorylation site mutations have on the viral life cycle in vivo, mice were ocularly infected with wild-type HSV-1, the Phos mutants, or their marker rescue counterparts. Subsequently, viral replication, establishment of latency, and viral explant-induced reactivation of these viruses were examined. Relative to wild-type virus, Phos 1 eye titers were reduced as much as 7- and 18-fold on days 1 and 5 postinfection, respectively. Phos 2 eye titers showed a decrease of 6-fold on day 1 postinfection. Titers of Phos 1 and 2 trigeminal ganglia were reduced as much as 16- and 20-fold, respectively, on day 5 postinfection. Additionally, the reactivation efficiencies of Phos 1 and 2 were impaired relative to wild-type HSV-1, although both viruses established wild-type levels of latency in vivo. The acute replication, latency, and reactivation phenotypes of Phos 3 were similar to those of wild-type HSV-1. We conclude from these studies that phosphorylation is likely a key modulator of ICP0's biological activities in a mouse ocular model of HSV-1 infection.  相似文献   

9.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

10.
Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase δ was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.Adeno-associated virus (AAV) is a human parvovirus that is currently used as a gene transfer vector (14). AAV particles consist of a small icosahedral capsid protecting a single 4.7-kb single-stranded DNA (ssDNA) genome with two open reading frames, rep and cap, surrounded by inverted terminal repeats (ITRs). The ITRs are the only sequences required in cis for genome replication and packaging. The rep gene encodes four nonstructural Rep proteins: Rep78, -68, -52, and -40. The two larger isoforms, Rep78 and -68, have origin binding, helicase, and site-specific endonuclease activities and are involved in AAV gene expression and genome processing, including replication and site-specific integration (39). The two smaller Rep isoforms are not required for AAV DNA replication but are involved in the control of viral gene expression and packaging of viral DNA (30).When wild-type (wt) AAV infects a cell in the absence of a helper virus, it enters latency. Latent AAV genomes persist in cells either as episomes or as integrated genomes, preferentially at a specific locus (named AAVS1) on human chromosome 19. In most instances, no detectable viral gene expression or genome replication occurs unless the cell is co- or superinfected by a helper virus, such as adenovirus, herpes simplex virus type 1 (HSV-1), or HSV-2. Under these conditions, AAV replication and assembly take place in large intranuclear domains called replication compartments (RCs) that frequently colocalize with replication domains formed by the helper virus itself (81). The viral genome replicates by leading-strand synthesis and generates new ssDNA molecules by a strand displacement mechanism that occurs after strand- and site-specific cleavage of viral DNA by Rep78/68 within the ITRs (39).Studies conducted on the relationship between AAV and its helper viruses are important not only to identify helper activities that can be used to produce recombinant AAV vectors but also to understand how AAV adapts its replication strategy to the helper virus and to the nuclear environment in general. Adenovirus helper functions have historically been the first and most extensively studied functions. These studies have shown that adenovirus helps AAV by stimulating viral gene expression and by enhancing AAV genome replication, mostly indirectly (19). Indeed, early studies showed that the adenovirus polymerase (E2b) is dispensable for AAV replication (8) and that the viral DNA-binding protein (DBP), the product of the E2a gene, is able to modestly enhance the processivity of AAV genome replication in vitro (77). More recently, the adenovirus proteins E1b55k and E4orf6 were shown to stimulate AAV genome replication by degrading the cellular Mre11/Rad50/Nbs1 (MRN) complex that restricts AAV genome replication during adenovirus coinfection (32). The concept that AAV genome replication can rely mostly, if not uniquely, on direct help from cellular factors was further strengthened by the demonstration that purified proteins such as replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCM) proteins, and DNA polymerase δ (Pol δ) were sufficient to replicate the AAV genome in vitro in the presence of Rep (40-41, 43). The involvement of these cellular proteins during AAV genome replication was also confirmed by the proteomic analysis of factors associated with Rep proteins during adenovirus-induced AAV replication (42).Interestingly, studies conducted on HSV-1 helper activities suggest that the strategy of AAV replication may vary depending on the helper virus. Indeed, previous studies showed that the HSV-1 helicase-primase (HP) complex (UL5/8/52) and DBP (ICP8) could replicate transfected AAV-2 plasmids (80) and that the helicase activity, but not primase activity, of the HP complex was required for this effect (62, 66). More recently, a comprehensive study of HSV-1 helper activities demonstrated that the HSV-1 immediate-early proteins ICP0, ICP4, and ICP22 could stimulate rep gene expression, probably by diminishing intrinsic antiviral effects (1, 18). In addition, the HSV-1 DNA polymerase encoded by UL30, along with its associated processivity factor (UL42), although not strictly required, was demonstrated to significantly increase AAV replication levels induced in the presence of the HP complex and ICP8. Interestingly, the HSV-1 HP complex, DBP, and polymerase were also shown to be sufficient to replicate AAV DNA in vitro in the presence of Rep proteins without any cellular protein (78). Altogether, these observations indicate that in the context of an HSV-1 coinfection, AAV relies extensively on viral activities provided by the helper that directly participate in AAV genome replication.To further elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis to identify the cellular and HSV-1 factors associated with Rep proteins and, consequently, potentially recruited within AAV RCs. To analyze Rep-associated proteins in the presence and absence of HSV-1 DNA replication, this analysis was performed using wt HSV-1 and an HSV-1 mutant in which the DNA polymerase encoded by the UL30 gene is absent (HSVΔUL30). This study resulted in the identification of approximately 60 cellular proteins, among which the largest functional categories corresponded to factors involved in DNA and RNA metabolism. Immunofluorescence analyses confirmed that in the presence of HSV-1, a basal set of cellular DNA replication enzymes, including RPA, RFC, and PCNA, was recruited within AAV RCs, with the exception of the MCM helicases. The cellular DNA polymerases, in particular Pol δ, were not identified by this analysis but subsequently were shown to be recruited in AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, our results indicate that AAV replication induced by HSV-1 is associated with the recruitment of DNA repair factors, including components of the MRN complex, the Ku proteins, PARP-1, and factors of the mismatch repair (MMR) pathway. Finally, several HSV-1 proteins, most notably the UL12 protein, were also identified within AAV RCs. Our analyses confirmed the association between UL12 and Rep and demonstrated for the first time that this viral exonuclease plays a critical role during AAV replication by enhancing the formation of discrete AAV replicative forms and the production of AAV particles.Altogether, these results indicate that in the presence of HSV-1, AAV may replicate by using a basal set of cellular DNA replication enzymes but also relies extensively on HSV-1-derived proteins for its replication, including UL12, a newly discovered helper factor. These results suggest that AAV may be able to differentially adapt its replication strategy to the nuclear environment induced by the helper virus.  相似文献   

11.
12.
Infected-cell protein 0 (ICP0) is a RING finger E3 ligase that regulates herpes simplex virus (HSV) mRNA synthesis, and strongly influences the balance between latency and replication of HSV. For 25 years, the nuclear functions of ICP0 have been the subject of intense scrutiny. To obtain new clues about ICP0''s mechanism of action, we constructed HSV-1 viruses that expressed GFP-tagged ICP0. To our surprise, both GFP-tagged and wild-type ICP0 were predominantly observed in the cytoplasm of HSV-infected cells. Although ICP0 is exclusively nuclear during the immediate-early phase of HSV infection, further analysis revealed that ICP0 translocated to the cytoplasm during the early phase where it triggered a previously unrecognized process; ICP0 dismantled the microtubule network of the host cell. A RING finger mutant of ICP0 efficiently bundled microtubules, but failed to disperse microtubule bundles. Synthesis of ICP0 proved to be necessary and sufficient to disrupt microtubule networks in HSV-infected and transfected cells. Plant and animal viruses encode many proteins that reorganize microtubules. However, this is the first report of a viral E3 ligase that regulates microtubule stability. Intriguingly, several cellular E3 ligases orchestrate microtubule disassembly and reassembly during mitosis. Our results suggest that ICP0 serves a dual role in the HSV life cycle, acting first as a nuclear regulator of viral mRNA synthesis and acting later, in the cytoplasm, to dismantle the host cell''s microtubule network in preparation for virion synthesis and/or egress.  相似文献   

13.
14.
15.
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP0 has been implicated in the regulation of viral gene expression and the reactivation of latent HSV-1. Evidence demonstrates that ICP0 is an activator of viral gene expression yet does not distinguish between a direct or indirect role in this process. To further our understanding of the function of ICP0 in the context of the virus life cycle, site-directed mutagenesis of the consensus C3HC4 zinc finger domain was performed, and the effects of these mutations on the growth and replication of HSV-1 were assessed. We demonstrate that alteration of any of the consensus C3HC4 cysteine or histidine residues within this domain abolishes ICP0-mediated transactivation, alters the intranuclear localization of ICP0, and significantly increases its stability. These mutations result in severe defects in the growth and DNA replication of recombinant herpesviruses and in their ability to initiate lytic infections at low multiplicities of infection. These viruses, at low multiplicities of infection, synthesize wild-type levels of the IE proteins ICP0 and ICP4 at early times postinfection yet exhibit significant decreases in the synthesis of the essential IE protein ICP27. These findings reveal a role for ICP0 in the expression of ICP27 and suggest that the multiplicity-dependent growth of alpha0 mutant viruses results partially from reduced levels of ICP27.  相似文献   

16.
Viral genes sufficient and required for herpes simplex virus type 1 (HSV-1) reactivation were identified using neuronally differentiated PC12 cells (ND-PC12 cells) in which quiescent infections with wild-type and recombinant strains were established. In this model, the expression of ICP0, VP16, and ICP4 from adenovirus vectors was sufficient to reactivate strains 17+ and KOS. The transactivators induced similar levels of reactivation with KOS; however, 17+ responded more efficiently to ICP0. To identify viral transactivators required for reactivation, we examined quiescently infected PC12 cell cultures (QIF-PC12 cell cultures) established with HSV-1 deletion mutants R7910 (ΔICP0), KD6 (ΔICP4), and in1814, a virus containing an insertion mutation in VP16. Although growth of these mutant viruses was impaired in ND-PC12 cells, R7910 and in1814 reactivated at levels equivalent to or better than their respective parental controls following stress (i.e., heat or forskolin) treatment. After treatment with trichostatin A, in1814 and 17+ reactivated efficiently, whereas the F strain and R7910 reactivated inefficiently. In contrast, KD6 failed to reactivate. In experiments with the recombinant KM100, which contains the in1814 mutation in VP16 and the n212 mutation in ICP0, spontaneous and stress-induced reactivation was observed. However, two strains, V422 and KM110, which lack the acidic activation domain of VP16, did not reactivate above low spontaneous levels after stress. These results demonstrate that in QIF-PC12 cells ICP0 is not required for efficient reactivation of HSV-1, the acidic activation domain of VP16 is essential for stress-induced HSV-1 reactivation, and HSV-1 reactivation is modulated uniquely by different treatment constraints and phenotypes.  相似文献   

17.
18.
19.
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation.  相似文献   

20.
Murine noroviruses are a recently discovered group of viruses found within mouse research colonies in many animal facilities worldwide. In this study, we used 2 novel mouse norovirus (MNV) wildtype isolates to examine the kinetics of transmission and tissue distribution in breeding units of NOD.CB17-Prkdcscid/J and backcrossed NOD.CB17-Prkdcscid/J × NOD/ShiLtJ (N1) mice. Viral shedding in feces and dissemination to tissues of infected offspring mice were monitored by RT-PCR over a 6-wk period postpartum. Histologic sections of tissues from mice exposed to MNV were examined for lesions and their sera monitored for the presence of antibodies to MNV. Viruses shed in feces of parental and offspring mice were compared for sequence homology of the Orf2 gene. Studies showed that the wildtype viruses MNV5 and MNV6 behaved differently in terms of the kinetics of transmission and distribution to tissues of offspring mice. For MNV5, virus transmission from parents to offspring was not seen before 3 wk after birth, and neither isolate was transmitted between cages of infected and control mice. Susceptibility to infection was statistically different between the 2 mouse strains used in the study. Both immunodeficient NOD.CB17-Prkdcscid/J mice and NOD.CB17-Prkdcscid/J × NOD/ShiLtJ offspring capable of mounting an immune response shed virus in their feces throughout the 6-wk study period, but no gross or histologic lesions were present in infected tissues. Progeny viruses isolated from the feces of infected offspring showed numerous mutations in the Orf2 gene for MNV5 but not MNV6. These results confirm previous studies demonstrating that the biology of MNV in mice varies substantially with each virus isolate and mouse strain infected.Abbreviations: MNV, murine norovirus; MLN, mesenteric lymph nodes; NOD-scid, NOD.CB17-Prkdcscid/J; VP1, viral protein 1The recent discovery of murine-specific noroviruses15 has stimulated concern in the laboratory animal health community regarding the potential for this group of viruses to cause disease in breeding colonies of mice or to negatively impact research with mice from norovirus infected colonies. Current knowledge of the biology of noroviruses in mice (MNV) is constrained by the limited number of virus isolates and mouse strains studied. One study15described the biologic and physicochemical properties of the original MNV1 isolated from mice deficient in a specific innate immune function. More recently, this innate immune deficiency has been mapped to STAT1 regulation of IFNαβ secretion.21Previous work15 demonstrated that inoculation of MNV1 into mouse strains deficient in the acquired immune response (129 RAG 2−/−, B6 RAG1−/−) resulted in the development of persistent infections with no evidence of disease, whereas inoculation of fully immunocompetent mice (129S6/SvEvTac) resulted in rapid elimination of MNV1, with viral RNA undetectable in the viscera by 3 d after inoculation. More recently, infections of outbred immunocompetent mouse strains with 3 wildtype isolates of MNV obtained from different geographic areas of the United States have been described.11 Virus was detected in the feces and tissue of infected mice throughout the 8-wk study, suggesting that some isolates of MNV may persistently infect immunocompetent mice.The purpose of the present investigation was to extend the current knowledge of MNV by using 2 isolates of the virus in mouse strains that have not been previously used as infection models for MNV. We examined natural virus transmission from infected breeders to offspring, kinetics of infection within litters of infected breeding mice, and the pathogenesis of infection in breeding colonies of mice. In addition, we examined the effect of virus passage from parents to offspring on genomic stability of these 2 viral isolates. Exposure of offspring of immunodeficient mice and immunocompetent mice to the 2 different isolates of MNV resulted in different patterns of virus transmission, susceptibility to infection and kinetics of infection as shown by the progressive spread of virus within litters and in intestinal and extraintestinal tissues. MNV was shed persistently in the feces of all mice tested regardless of immune status, and viral progeny isolated from offspring mice contained genome sequence differences from the parent virus in the Orf2 gene, an area of the MNV genome known to be susceptible to mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号