首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Latrogenic obstruction of the vas deferens within the inguinal canal can be managed by direct onsite vasovasostomy. However, in cases with large defect of the vas, the anastomosis may be under tension. Dissecting through the site of a previous hernia repair is tedious, and may lead to recurrence of the hernia.

Aim of the Work

The present work reports on an alternative technique that avoids the latter drawbacks.

Patients and Methods

A total of 15 patients with azoospermia due to inguinal obstruction of the vas deferens underwent bilateral repair. Ten cases were operated upon using the classical transperitoneal approach. Under laparoscopic vision, the pelvic vas was rendered intraperitoneal and its lateral-most end was clipped at the internal inguinal ring, cut and extruded from the abdomen through a port in the external inguinal ring. Vasovasostomy was performed, bridging the retrieved stump of the pelvic vas with the scrotal vas. Five patients were operated upon through the extraperitoneal approach.

Results

By the end of one year. Nine out of the 15 cases showed an average sperm concentration of 17±3.5 million/ml.

Conclusion

Pelvi-scrotal vasovasostomy (PSVV) or Shaeer’s vasovasostomy can be offered as a cost-effective and successful alternative or supplement to intracytoplasmic sperm injection (ICSI), for cases with iatrogenic large defects of the vas deferens within the inguinal canal. The transperitoneal approach is more convenient in post-herniotomy and post-herniorrhaphy cases.  相似文献   

2.

Introduction

Iatrogenic obstruction of the vas deferens within the inguinal canal can be managed by direct onsite vasovasostomy. However, in cases with large defect of the vas, the anastomosis may be under tension. Dissecting through the site of a previous hernia repair is tedious, and may lead to recurrence of the hernia.

Aim of the Work

The present work reports on an alternative technique that avoids the latter drawbacks.

Patients and Methods

A total of 15 patients with azoospermia due to inguinal obstruction of the vas deferens underwent bilateral repair. Ten cases were operated upon using the classical transperitoneal approach. Under laparoscopic vision, the pelvic vas was rendered intra-peritoneal and its lateral-most end was clipped at the internal inguinal ring, cut and extruded from the abdomen through a port in the external inguinal ring. Vasovasostomy was performed, bridging the retrieved stump of the pelvic vas with the scrotal vas. Five patients were operated upon through the extraperitoneal approach.

Results

By the end of one year. Nine out of the 15 cases showed an average sperm concentration of 17±3.5 million/ml.

Conclusion

Pelvi-scrotal vasovasostomy (PSVV) or Shaeer’s vasovasostomy can be offered as a cost-effective and successful alternative or supplement to intracyto-plasmic sperm injection (ICSI), for cases with iatrogenic large defects of the vas deferens within the inguinal canal. The transperitoneal approach is more convenient in postherniotomy and post-herniorrhaphy cases.  相似文献   

3.

Key message

We utilized a combination of BSA and RNA-Seq to identify SNPs linked to the Rfd1 locus, a restorer-of-fertility gene in radish. A high-density linkage map was constructed using this approach.

Abstract

Male fertility of cytoplasmic male sterility conditioned by the Dongbu cytoplasmic and genic male-sterility cytoplasm can be restored by a restorer-of-fertility locus, Rfd1, in radish. To construct a high-density linkage map and to identify a candidate gene for the Rfd1 locus, bulked segregant analysis and RNA-seq approaches were combined. A total of 26 and 28 million reads produced from male-fertile and male-sterile bulked RNA were mapped to the radish reference unigenes. After stringent screening of SNPs, 327 reliable SNPs of 109 unigenes were selected. Arabidopsis homologs for 101 of the 109 genes were clustered around the 4,000 kb region of Arabidopsis chromosome 3, which was syntenic to the Rfd1 flanking region. Since the reference unigene set was incomplete, the contigs were de novo assembled to identify 134 contigs harboring SNPs. Most of SNP-containing contigs were also clustered on the same syntenic region in Arabidopsis chromosome. A total of 21 molecular markers positioned within a 2.1 cM interval including the Rfd1 locus were developed, based on the selected unigenes and contigs. A segregating population consisting of 10,459 individuals was analyzed to identify recombinants containing crossovers within this interval. A total of 284 identified recombinants were then used to construct a high-density map, which delimited the Rfd1 locus into an 83-kb syntenic interval of Arabidopsis chromosome 3. Since no candidate gene, such as a pentatricopeptide repeat (PPR)-coding gene, was found in this interval, 231 unigenes and 491 contigs containing putative PPR motifs were analyzed further, but no PPR gene in linkage disequilibrium with the Rfd1 locus could be found.  相似文献   

4.

Introduction

Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region.

Methods

To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry.

Results

Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region.

Conclusions

Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.  相似文献   

5.
6.

Key message

NGS-assisted super pooling emerging as powerful tool to accelerate gene mapping and haplotype association analysis within target region uncovering specific linkage SNPs or alleles for marker-assisted gene pyramiding.

Abstract

Conventional gene mapping methods to identify genes associated with important agronomic traits require significant amounts of financial support and time. Here, a single nucleotide polymorphism (SNP)-based mapping approach, RNA-Seq and SNP array assisted super pooling analysis, was used for rapid mining of a candidate genomic region for stripe rust resistance gene Yr26 that has been widely used in wheat breeding programs in China. Large DNA and RNA super-pools were genotyped by Wheat SNP Array and sequenced by Illumina HiSeq, respectively. Hundreds of thousands of SNPs were identified and then filtered by multiple filtering criteria. Among selected SNPs, over 900 were found within an overlapping interval of less than 30 Mb as the Yr26 candidate genomic region in the centromeric region of chromosome arm 1BL. The 235 chromosome-specific SNPs were converted into KASP assays to validate the Yr26 interval in different genetic populations. Using a high-resolution mapping population (>?30,000 gametes), we confined Yr26 to a 0.003-cM interval. The Yr26 target region was anchored to the common wheat IWGSC RefSeq v1.0 and wild emmer WEWSeq v.1.0 sequences, from which 488 and 454 kb fragments were obtained. Several candidate genes were identified in the target genomic region, but there was no typical resistance gene in either genome region. Haplotype analysis identified specific SNPs linked to Yr26 and developed robust and breeder-friendly KASP markers. This integration strategy can be applied to accelerate generating many markers closely linked to target genes/QTL for a trait of interest in wheat and other polyploid species.
  相似文献   

7.

Key message

We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species.

Abstract

Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.  相似文献   

8.

Background

Candidate single nucleotide polymorphisms (SNPs) from genome-wide association studies (GWASs) were often selected for validation based on their functional annotation, which was inadequate and biased. We propose to use the more than 200,000 microarray studies in the Gene Expression Omnibus to systematically prioritize candidate SNPs from GWASs.

Results

We analyzed all human microarray studies from the Gene Expression Omnibus, and calculated the observed frequency of differential expression, which we called differential expression ratio, for every human gene. Analysis conducted in a comprehensive list of curated disease genes revealed a positive association between differential expression ratio values and the likelihood of harboring disease-associated variants. By considering highly differentially expressed genes, we were able to rediscover disease genes with 79% specificity and 37% sensitivity. We successfully distinguished true disease genes from false positives in multiple GWASs for multiple diseases. We then derived a list of functionally interpolating SNPs (fitSNPs) to analyze the top seven loci of Wellcome Trust Case Control Consortium type 1 diabetes mellitus GWASs, rediscovered all type 1 diabetes mellitus genes, and predicted a novel gene (KIAA1109) for an unexplained locus 4q27. We suggest that fitSNPs would work equally well for both Mendelian and complex diseases (being more effective for cancer) and proposed candidate genes to sequence for their association with 597 syndromes with unknown molecular basis.

Conclusions

Our study demonstrates that highly differentially expressed genes are more likely to harbor disease-associated DNA variants. FitSNPs can serve as an effective tool to systematically prioritize candidate SNPs from GWASs.  相似文献   

9.

Background

In a previous study, a number of genes, associated with spine musculoskeletal deformity phenotypes in mouse and in synteny between mouse and man, were identified as candidate genes for IS. Among these genes, MATN 1, which carries a polymorphic microsatellite marker within its sequence, was selected for a linkage analysis. MATN1 is localised at 1p35 and is mainly expressed in cartilage. The objective of this study was to assess a linkage disequilibrium between the matrilin-1 (MATN 1) gene and the idiopathic scoliosis (IS).

Methods

The genetic study was conducted on a population of 81 trios, each consistent of a daughter/son affected by idiopathic scoliosis (IS) and both parents. In all trios components, the region of MATN1 gene containing the microsatellite marker was amplified by a polymerase chain reaction. The amplicons were analysed by a DNA sequencer-genotyper. The statistical linkage analysis was performed using the extended transmission/disequilibrium test.

Results

Three microsatellite polymorphisms, respectively consisting of 103 bp, 101 bp and 99 bp, were identified. ETDT evidenced a significant preferential transmission for the 103 bp allele (Chi-square = 5.058, df = 1, P = 0.024)

Conclusion

The results suggest that the familial idiopathic scoliosis is associated to the MATN1 gene.  相似文献   

10.
Guo  Jiazhong  Jorjani  Hossein  Carlborg  Örjan 《BMC genetics》2012,13(1):1-10

Background

Fusarium graminearum sensu stricto (s.s.) is an ubiquitous pathogen of cereals. The economic impact of Fusarium head blight (FHB) is characterized by crop losses and mycotoxin contamination. Our objective was to associate SNP diversity within candidate genes with phenotypic traits. A total of 77 F. graminearum s.s. isolates was tested for severity of fungal infection (= aggressiveness) and deoxynivalenol (DON) production in an inoculated field experiment at two locations in each of two years. For seven genes known to control fungal growth (MetAP1, Erf2) or DON production (TRI1, TRI5, TRI6 TRI10 and TRI14) single nucleotides polymorphic sites (SNPs) were determined and evaluated for the extent of linkage disequilibrium (LD). Associations of SNPs with both phenotypic traits were tested using linear mixed models.

Results

Decay of LD was in most instances fast. Two neighboring SNPs in MetAP1 and one SNP in Erf2 were significantly (P < 0.05) associated with aggressiveness explaining proportions of genotypic variance (p G ) of 25.6%, 0.5%, and 13.1%, respectively. One SNP in TRI1 was significantly associated with DON production (p G = 4.4).

Conclusions

We argue that using the published sequence information of Fusarium graminearum as a template to amplify comparative sequence parts of candidate genes is an effective method to detect quantitative trait loci. Our findings underline the potential of candidate gene association mapping approaches to identify functional SNPs underlying aggressiveness and DON production for F. graminearum s.s populations.  相似文献   

11.

Background

Genome wide association studies have identified microtubule associated protein tau (MAPT) H1 haplotype single nucleotide polymorphisms (SNPs) as leading common risk variants for Parkinson’s disease, progressive supranuclear palsy and corticobasal degeneration. The MAPT risk variants fall within a large 1.8 Mb region of high linkage disequilibrium, making it difficult to discern the functionally important risk variants. Here, we leverage the strong haplotype-specific expression of MAPT exon 3 to investigate the functionality of SNPs that fall within this H1 haplotype region of linkage disequilibrium.

Methods

In this study, we dissect the molecular mechanisms by which haplotype-specific SNPs confer allele-specific effects on the alternative splicing of MAPT exon 3. Firstly, we use haplotype-hybrid whole-locus genomic MAPT vectors studies to identify functional SNPs. Next, we characterise the RNA-protein interactions at two loci by mass spectrometry. Lastly, we knockdown candidate splice factors to determine their effect on MAPT exon 3 using a novel allele-specific qPCR assay.

Results

Using whole-locus genomic DNA expression vectors to express MAPT haplotype variants, we demonstrate that rs17651213 regulates exon 3 inclusion in a haplotype-specific manner. We further investigated the functionality of this region using RNA-electrophoretic mobility shift assays to show differential RNA-protein complex formation at the H1 and H2 sequence variants of SNP rs17651213 and rs1800547 and subsequently identified candidate trans-acting splicing factors interacting with these functional SNPs sequences by RNA-protein pull-down experiment and mass spectrometry. Finally, gene knockdown of candidate splice factors identified by mass spectrometry demonstrate a role for hnRNP F and hnRNP Q in the haplotype-specific regulation of exon 3 inclusion.

Conclusions

We identified common splice factors hnRNP F and hnRNP Q regulating the haplotype-specific splicing of MAPT exon 3 through intronic variants rs1800547 and rs17651213. This work demonstrates an integrated approach to characterise the functionality of risk variants in large regions of linkage disequilibrium.
  相似文献   

12.

Key message

Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana.

Abstract

Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r 2 = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r 2 = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.  相似文献   

13.

Background

Inguinal and scrotal hernias are of great concern to pig producers, and lead to poor animal welfare and severe economic loss. Selection against these conditions is highly preferable, but at this time no gene, Quantitative Trait Loci (QTL), or mode of inheritance has been identified in pigs or in any other species. Therefore, a complete genome scan was performed in order to identify genomic regions affecting inguinal and scrotal hernias in pigs. Records from seedstock breeding farms were collected. No clinical examinations were executed on the pigs and there was therefore no distinction between inguinal and scrotal hernias. The genome scan utilised affected sib pairs (ASP), and the data was analysed using both an ASP test based on Non-parametric Linkage (NPL) analysis, and a Transmission Disequilibrium Test (TDT).

Results

Significant QTLs (p < 0.01) were detected on 8 out of 19 porcine chromosomes. The most promising QTLs, however, were detected in SSC1, SSC2, SSC5, SSC6, SSC15, SSC17 and SSCX; all of these regions showed either statistical significance with both statistical methods, or convincing significance with one of the methods. Haplotypes from these suggestive QTL regions were constructed and analysed with TDT. Of these, six different haplotypes were found to be differently transmitted (p < 0.01) to healthy and affected pigs. The most interesting result was one haplotype on SSC5 that was found to be transmitted to hernia pigs with four times higher frequency than to healthy pigs (p < 0.00005).

Conclusion

For the first time in any species, a genome scan has revealed suggestive QTLs for inguinal and scrotal hernias. While this study permitted the detection of chromosomal regions only, it is interesting to note that several promising candidate genes, including INSL3, MIS, and CGRP, are located within the highly significant QTL regions. Further studies are required in order to narrow down the suggestive QTL regions, investigate the candidate genes, and to confirm the suggestive QTLs in other populations. The haplotype associated with inguinal and scrotal hernias may help in achieving selection against the disorder.  相似文献   

14.

Background

The 12q24 locus entails at least one gene responsible for hypercholesterolemia. Within the 12q24 locus lies the gene of proteasome modulator 9 (PSMD9). PSMD9 is in linkage with type 2 diabetes (T2D), T2D-nephropathy and macrovascular pathology in Italian families and PSMD9 rare mutations contribute to T2D.

Aims

In the present study, we aimed at determining whether the PSMD9 T2D risk single nucleotide polymorphisms (SNPs) IVS3 + nt460 A > G, IVS3 + nt437 T > C and E197G A > G are linked to hypercholesterolemia in 200 T2D Italian families.

Methods

We characterized 200 Italian families for presence and/or absence of hypercholesterolemia characterized by LDL levels ≥ 100 mg/dl in drug-naïve patients and/or presence of a diagnosis of hypercholesterolemia in a patient treated with statin medication. The phenotypes were described as unknown in all cases in which the diagnosis was either unclear or the data were missing. We tested in the 200 Italians families for evidence of linkage of the PSMD9 SNPs with hypercholesterolemia. The non-parametric linkage analysis was performed for the qualitative phenotype by using the Merlin software; the Lod score and correspondent P-value were calculated. For the significant linkage score, 1000 replicates were performed to calculate the empirical P-value.

Results

The PSMD9 gene SNPs studied show linkage to hypercholesterolemia. The results are not due to random chance.

Conclusions

PSMD9 should be tested in all populations reporting linkage to hypercholesterolemia within the chromosome 12q24 locus. The impact of this gene on hypercholesterolemia and contribution to cardio- and cerebrovascular events may be high.  相似文献   

15.

Background

Genes encoding cytokine mediators are prime candidates for genetic analysis in conditions with T-helper (Th) cell disease driven imbalance. Idiopathic Pulmonary Fibrosis (IPF) is a predominantly Th2 mediated disease associated with a paucity of interferon-gamma (IFN-γ). The paucity of IFN-γ may favor the development of progressive fibrosis in IPF. Interleukin-12 (IL-12) plays a key role in inducing IFN-γ production. The aim of the current study was to assess whether the 1188 (A/C) 3'UTR single nucleotide polymorphism (SNP) in the IL-12 p40 subunit gene which was recently found to be functional and the 5644 (G/A) 3' UTR SNP of the IFN-γ gene were associated with susceptibility to IPF.

Methods

We investigated the allelic distribution in these loci in UK white Caucasoid subjects comprising 73 patients with IPF and 157 healthy controls. The SNPs were determined using the polymerase chain reaction in association with sequence-specific primers incorporating mismatches at the 3'-end.

Results

Our results showed that these polymorphisms were distributed similarly in the IPF and control groups

Conclusion

We conclude that these two potentially important candidate gene single nucleotide polymorphisms are not associated with susceptibility to IPF.  相似文献   

16.

Background

Variants in numerous genes are thought to affect the success or failure of cancer chemotherapy. Interindividual variability can result from genes involved in drug metabolism and transport, drug targets (receptors, enzymes, etc), and proteins relevant to cell survival (e.g., cell cycle, DNA repair, and apoptosis). The purpose of the current study is to establish a flexible, cost-effective, high-throughput genotyping platform for candidate genes involved in chemoresistance and -sensitivity, and treatment outcomes.

Methods

We have adopted SNPlex for genotyping 432 single nucleotide polymorphisms (SNPs) in 160 candidate genes implicated in response to anticancer chemotherapy.

Results

The genotyping panels were applied to 39 patients with chronic lymphocytic leukemia undergoing flavopiridol chemotherapy, and 90 patients with colorectal cancer. 408 SNPs (94%) produced successful genotyping results. Additional genotyping methods were established for polymorphisms undetectable by SNPlex, including multiplexed SNaPshot for CYP2D6 SNPs, and PCR amplification with fluorescently labeled primers for the UGT1A1 promoter (TA)nTAA repeat polymorphism.

Conclusion

This genotyping panel is useful for supporting clinical anticancer drug trials to identify polymorphisms that contribute to interindividual variability in drug response. Availability of population genetic data across multiple studies has the potential to yield genetic biomarkers for optimizing anticancer therapy.  相似文献   

17.
18.
A genome-wide association study of seed protein and oil content in soybean   总被引:8,自引:0,他引:8  

Background

Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content.

Results

A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil.

Conclusions

This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).  相似文献   

19.

Key message

Using association and linkage mapping, two SNP markers closely linked to the SBWMV resistance gene on chromosome 5D were identified and can be used to select the gene in breeding.

Abstract

Soil-borne wheat mosaic virus (SBWMV) disease is a serious viral disease of winter wheat growing areas worldwide. SBWMV infection can significantly reduce grain yield up to 80 %. Developing resistant wheat cultivars is the only feasible strategy to reduce the losses. In this study, wheat Infinium iSelect Beadchips with 9 K wheat SNPs were used to genotype an association mapping population of 205 wheat accessions. Six new SNPs from two genes were identified to be significantly associated with the gene for SBWMV resistance on chromosome 5D. The SNPs and Xgwm469, an SSR marker that has been reported to be associated with the gene, were mapped close to the gene using F6-derived recombinant inbred lines from the cross between a resistant parent ‘Heyne’ and a susceptible parent ‘Trego’. Two representative SNPs, wsnp_CAP11_c209_198467 and wsnp_JD_c4438_5568170, from the two linked genes in wheat were converted into KBioscience Competitive Allele-Specific Polymerase assays and can be easily used in marker-assisted selection to improve wheat resistance to SBWMV in breeding.  相似文献   

20.

Key message

Fine mapping of the novel thermo-sensitive genic male sterility locus tms9 - 1 in the traditional TGMS line HengnongS-1 revealed that the MALE STERILITY1 homolog OsMS1 is the candidate gene.

Abstract

Photoperiod-thermo-sensitive genic male sterility (P/TGMS) has been widely used in the two-line hybrid rice breeding system. HengnongS-1 is one of the oldest TGMS lines and is often used in indica two-line breeding programs in China. In this study, our genetic analysis showed that the TGMS gene in HengnongS-1 was controlled by a single recessive gene that was non-allelic with the other TGMS loci identified, including C815S, Zhu1S and Y58S. Using SSR markers and bulked segregant analysis, we located the TGMS locus on chromosome 9 and named the gene tms9-1. Fine mapping further narrowed the tms9-1 loci to a 162 kb interval between two dCAPS markers. Sequence analysis revealed that a T to C substitution results in an amino acid change in the tms9-1 candidate gene (Os09g27620) in HengnongS-1 as compared to Minghui63. Sequencing of other rice accessions, including six P/TGMS lines, seven indica varieties and nine japonica varieties, showed that this SNP was exclusive to HengnongS-1. With multiple sequence alignment and expression pattern analyses, the rice MALE STERILITY1 homolog OsMS1 gene was identified as the candidate gene for tms9-1. Therefore, our study identified a novel TGMS locus and will facilitate the functional identification of the tms9-1 gene. Moreover, the markers linked to the tms9-1 gene will provide useful tools for the development of new TGMS lines by marker-assisted selection in two-line hybrid rice breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号