首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aneuploidy and polyploidy are commonly observed in transformed cells. These states arise from failures during mitotic chromosome segregation, some of which can be traced to defects in the function or duplication of the centrosome. The centrosome is the organizing center for the mitotic spindle, and the equivalent organelle in the budding yeast, Saccharomyces cerevisiae, is the spindle pole body. We review how defects in spindle pole body duplication or function lead to genetic instability in yeast. There are several well documented instances of genetic instability in yeast that can be traced to the spindle pole body, all of which serve as models for genetic instability in transformed cells.  相似文献   

2.
Centrosomes (spindle pole body in yeast) constitute the two poles of the bipolar mitotic spindle and play a prominent role in the segregation of chromosomes during mitosis. Like chromosomes, the centrosome inherited from the progenitor cell duplicates once in each division cycle, following which the sister centrosomes segregate away from each other to assemble a short spindle upon initiation of mitosis. Cdh1, an activator of the E3 ubiquitin ligase APC (Anaphase Promoting Complex), is a potent inhibitor of centrosome segregation and suppresses spindle assembly during S phase by mediating proteolytic destruction of the microtubule associated proteins (MAPs) required for centrosome separation. A recent study in yeast suggests that concerted action by two prominent kinases Cdk1 and polo are required to bring this destruction to a halt by inactivating Cdh1 and to facilitate spindle assembly. This is an effective strategy for the modulation of the activities of cell cycle regulators that require multiple phosphorylation. The control circuit involving Cdh1, Cdk1, Polo and MAPs may be also targeted by other cellular networks in contexts that demand the restraining of spindle dynamics.  相似文献   

3.
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.  相似文献   

4.
Chromosome segregration and cell division requires the regulated assembly of the mitotic spindle apparatus. This mitotic spindle is composed of condensed chromosomes attached to a dynamic array of microtubules. The microtubule array is nucleated by centrosomes and organized by associated structural and motor proteins. Mechanical linkages between sister chromatids and microtubules are critical for spindle assembly and chromosome segregation. Defects in either chromosome or centrosome segregation can lead to aneuploidy and are correlated with cancer progression. In this review, we discuss current models of how centrosomes and chromosomes organize the spindle for their equal distribution to each daughter cell.  相似文献   

5.
Takada S  Kelkar A  Theurkauf WE 《Cell》2003,113(1):87-99
In syncytial Drosophila embryos, damaged or incompletely replicated DNA triggers centrosome disruption in mitosis, leading to defects in spindle assembly and anaphase chromosome segregation. The damaged nuclei drop from the cortex and are not incorporated into the cells that form the embryo proper. A null mutation in the Drosophila checkpoint kinase 2 tumor suppressor homolog (DmChk2) blocks this mitotic response to DNA lesions and also prevents loss of defective nuclei from the cortex. In addition, DNA damage leads to increased DmChk2 localization to the centrosome and spindle microtubules. DmChk2 is therefore essential for a "mitotic catastrophe" signal that disrupts centrosome function in response to genotoxic stress and ensures that mutant and aneuploid nuclei are eliminated from the embryonic precursor pool.  相似文献   

6.
Asymmetric cell division generates cell diversity and contributes to cellular aging and rejuvenation. Here, we review the molecular mechanisms enabling budding yeast to recognize spindle pole bodies (SPB, centrosome equivalent) based on their age, and guide their non‐random mitotic segregation: SPB inheritance requires the distinction of old from new SPBs and is regulated by the SPB‐inheritance network (SPIN) and the mitotic exit network (MEN). The SPIN marks the pre‐existing SPB as old and the MEN recognizes these marks translating them into spindle orientation. We next revisit other molecules and structures that partition depending on their age rather than their abundance at mitosis as, for example, DNA, centrosomes, mitochondria, and histones in yeast and other systems. The recurrence of this differential behavior suggests a functional significance for numerous cell types, which we then discuss. We conclude that non‐random segregation may facilitate asymmetric cell fate determination and thereby indirectly aging and rejuvenation. Also see the video abstract here: https://youtu.be/1sQ4rAomnWY .  相似文献   

7.
Chlamydiae are Gram negative, obligate intracellular bacteria, and Chlamydia trachomatis is the etiologic agent of the most commonly reported sexually transmitted disease in the United States. Chlamydiae undergo a biphasic life cycle that takes place inside a parasitophorous vacuole termed an inclusion. Chlamydial infections have been epidemiologically linked to cervical cancer in patients previously infected by human papillomavirus (HPV). The inclusion associates very closely with host cell centrosomes, and this association is dependent upon the host motor protein dynein. We have previously reported that this interaction induces supernumerary centrosomes in infected cells, leading to multipolar mitotic spindles and inhibiting accurate chromosome segregation. Our findings demonstrate that chlamydial infection causes mitotic spindle defects independently of its effects on centrosome amplification. We show that chlamydial infection increases centrosome spread and inhibits the spindle assembly checkpoint delay to disrupt centrosome clustering. These data suggest that chlamydial infection exacerbates the consequences of centrosome amplification by inhibiting the cells' ability to suppress the effects of these defects on mitotic spindle organization. We hypothesize that these combined effects on mitotic spindle architecture identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation.  相似文献   

8.
Spindle assembly, establishment of kinetochore attachment, and sister chromatid separation must occur during mitosis in a highly coordinated fashion to ensure accurate chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to allow interaction between microtubules of the mitotic spindle and the kinetochores. It was previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome separation and that centrosome separation can be either complete at the time of NEB or can be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attachment or chromosome segregation. We used a combination of experimental and computational approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not "search" the entire cellular space, leading to formation of large numbers of syntelic attachments, which can be an intermediate stage in the formation of merotelic kinetochores.  相似文献   

9.
The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform.  相似文献   

10.
The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1.  相似文献   

11.
During early embryogenesis of Drosophila melanogaster, mutations in the DNA-replication checkpoint lead to chromosome-segregation failures. Here we show that these segregation failures are associated with the assembly of an anastral microtubule spindle, a mitosis-specific loss of centrosome function, and dissociation of several components of the gamma-tubulin ring complex from a core centrosomal structure. The DNA-replication inhibitor aphidicolin and DNA-damaging agents trigger identical mitotic defects in wild-type embryos, indicating that centrosome inactivation is a checkpoint-independent and mitosis-specific response to damaged or incompletely replicated DNA. We propose that centrosome inactivation is part of a damage-control system that blocks chromosome segregation when replication/damage checkpoint control fails.  相似文献   

12.
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non‐cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome‐based, functionally distinct structures that require the action of microtubule‐mediated, motor‐driven transport for their assembly. Cilia proteins have been found at non‐cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia‐independent functions of cilia proteins and re‐evaluate their potential contributions to “cilia” disorders.  相似文献   

13.
The centrosome is the main MT organizing center in animal cells, and has traditionally been regarded as essential for organization of the bipolar spindle that facilitates chromosome segregation during mitosis. Centrosomes are associated with the poles of the mitotic spindle, and several cell types require these organelles for spindle formation. However, most plant cells and some female meiotic systems get along without this organelle, and centrosome‐independent spindle assembly has now been identified within some centrosome containing cells. How can such observations, which point to mutually incompatible conclusions regarding the requirement of centrosomes in spindle formation, be interpreted? With emphasis on the functional role of centrosomes, this article summarizes the current models of spindle formation, and outlines how observations obtained from spindle assembly assays in vitro may reconcile conflicting opinions about the mechanism of spindle assembly. It is further described how Drosophila mutants are used to address the functional interrelationships between individual centrosomal proteins and spindle formation in vivo. © 2004 Wiley‐Liss, Inc.  相似文献   

14.
The yeast spindle pole body (SPB) is the functional equivalent of the centrosome and forms the two poles of the mitotic spindle. Before mitosis, both SPBs and centrosomes are present as single copies and must be duplicated to form the bipolar spindle. SPB components have been identified using a combination of biochemistry and genetics, and their role during SPB duplication has been analysed using temperature-sensitive mutants. In this article, we describe structural aspects of SPB duplication and their possible relationship to centrosome duplication.  相似文献   

15.
The anchoring of microtubules to subcellular structures is critical for cell polarity and motility. Although the process of anchoring cytoplasmic microtubules to the centrosome has been studied in some detail, it is not known how spindle microtubules are anchored to the mitotic centrosome and, particularly, whether anchoring and nucleation of mitotic spindles are functionally separate. Here, we show that a fission yeast coiled-coil protein, Msd1, is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body (SPB). msd1 deletion causes spindle microtubules to abnormally extend beyond SPBs, which results in chromosome missegregation. Importantly, this protruding spindle is phenocopied by the amino-terminal deletion mutant of Alp4, a component of the gamma-tubulin complex (gamma-TuC), which lacks the potential Msd1-interacting domain. We propose that Msd1 interacts with gamma-TuC, thereby specifically anchoring the minus end of microtubules to SPBs without affecting microtubule nucleation.  相似文献   

16.
Aurora kinases play critical roles in chromosome segregation and cell division. They are implicated in the centrosome cycle, spindle assembly, chromosome condensation, microtubule-kinetochore attachment, the spindle checkpoint and cytokinesis. Aurora kinases are regulated through phosphorylation, the binding of specific partners and ubiquitin-dependent proteolysis. Several Aurora substrates have been identified and their roles are being elucidated. The deregulation of Aurora kinases impairs spindle assembly, checkpoint function and cell division, causing missegregation of individual chromosomes or polyploidization accompanied by centrosome amplification. Aurora kinases are frequently overexpressed in cancers and the identification of Aurora A as a cancer-susceptibility gene provides a strong link between mitotic errors and carcinogenesis.  相似文献   

17.
18.
19.
Chromosome loss or gain is associated with a large number of solid cancers, providing genomic plasticity and thus adaptability to cancer cells. Numerical centrosome abnormalities arising from centrosome over-duplication or failed cytokinesis are a recognized cause of aneuploidy. In higher eukaryotic cells, the centrosome duplicates only once per cell cycle to ensure the formation of a bipolar mitotic spindle that orchestrates the balanced distribution of the sister chromatids to the respective daughter cells. Here we delineate the events that allow abnormal centrosome duplication, resulting in mitotic errors and incorrect chromosome segregation in cells with sustained cyclin-dependent kinase (CDK) activity. We have identified NPM1 as a substrate for CDK6 activated by the Kaposi's sarcoma herpesvirus (KSHV) D-type cyclin and shown that p53-driven apoptosis occurs downstream of NPM1 phosphorylation as a checkpoint mechanism that prevents accumulation of cells with supernumerary centrosomes. Our findings provide evidence that abnormal chromosome segregation in KSHV-infected cells is a direct consequence of NPM1 phosphorylation and predict that genomic instability is an inevitable consequence of latent KSHV infection.  相似文献   

20.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号