首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elite controllers or suppressors (ES) are a group of HIV-1-infected individuals who maintain viral loads below the limit of detection of commercial assays for many years. The mechanisms responsible for this remarkable control are under intense study, with the hope of developing therapeutic vaccines effective against HIV-1. In this study, we addressed the question of the intrinsic susceptibility of ES CD4(+) T cells to infection. While we and others have previously shown that CD4(+) T cells from ES can be infected by HIV-1 isolates in vitro, these studies were confounded by exogenous activation and in vitro culture of CD4(+) T cells prior to infection. In order to avoid the changes in chemokine receptor expression that have been associated with such exogenous activation, we infected purified CD4(+) T cells directly after isolation from the peripheral blood of ES, viremic patients, and uninfected donors. We utilized a green fluorescent protein (GFP)-expressing proviral construct pseudotyped with CCR5-tropic or CXCR4-tropic envelope to compare viral entry using a fluorescence resonance energy transfer-based, single-round virus-cell fusion assay. The frequency of productive infection was also compared by assessing GFP expression. CD4(+) T cells from ES were as susceptible as or more susceptible than cells from viremic patients and uninfected donors to HIV-1 entry and productive infection. The results of this physiological study strongly suggest that differences in HIV-1 entry and infection of CD4(+) T cells alone cannot explain the elite control of viral replication.  相似文献   

2.
3.
The T cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. In order to identify primary sequences within the CD4 molecule that may be involved in the binding of the HIV-I envelope, we synthesized various peptides corresponding to the V1, V2, V3, and V4 domains of CD4. We tested the ability of these peptides to block the binding of purified HIV-I gp120 to CD4+ human lymphoblastic leukemia cells (CEM) using fluorescence-activated cell sorting. One of these peptides, corresponding to CD4 amino acids (74-95), when preincubated with gp120, blocked its subsequent binding to CEM cells by 80%. A truncated form of this peptide (81-95), was found to be as efficient as the longer peptide (74-95) in inhibiting the binding of gp120 to CEM cells. The same peptide did not block the binding of OKT4A or Leu3A anti-CD4 monoclonal antibodies, which were previously shown to block HIV-I binding to CD4. The peptides were also tested for their ability to block HIV-I infection of a T cell line in vitro. Only CD4 peptide (74-95) and the shorter fragment (81-95) succeeded in protecting T cells against infection with different HIV-I strains. All the other peptides examined had no effect on gp120 binding to CEM cells and did not block syncytia formation. Goat polyclonal antibodies against the CD4 peptide (74-95) gave modest interference of gp120 binding to CEM cells. These data suggest that the CD4 region (74-95) participates in the CD4-mediated binding and/or internalization of HIV-I virion.  相似文献   

4.
Mathematical modeling is becoming established in the immunologist's toolbox as a method to gain insight into the dynamics of the immune response and its components. No more so than in the case of the study of human immunodeficiency virus (HIV) infection, where earlier work on the viral dynamics brought significant advances in our understanding of HIV replication and evolution. Here, I review different areas of the study of the dynamics of CD4+ T cells in the setting of HIV, where modeling played important and diverse roles in helping us understand CD4+ T-cell homeostasis and the effect of HIV infection. As the experimental techniques become more accurate and quantitative, modeling should play a more important part in both experimental design and data analysis.  相似文献   

5.
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+) T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+) T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+) T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.  相似文献   

6.
7.
We have here investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a new member of the TNF cytokine superfamily, on the survival of Jurkat lymphoblastoid cell lines stably transfected with plasmids expressing the wild-type or mutated (Cys22) human immunodeficiency virus type 1 (HIV-1) tat gene. Jurkat cells transfected with wild-type tat were resistant to TRAIL-mediated apoptosis, while Jurkat cells mock-transfected with the control plasmid or with a mutated nonfunctional tat cDNA were highly susceptible to TRAIL-mediated apoptosis. Also, pretreatment with low concentrations (10-100 ng/ml) of extracellular synthetic Tat protein partially protected Jurkat cells from TRAIL-mediated apoptosis. Taken together, these results demonstrated that endogenously expressed tat and, to a lesser extent, extracellular Tat block TRAIL-mediated apoptosis. Since it has been shown that primary lymphoid T cells purified from HIV-1-infected individuals are more susceptible than those purified from normal individuals to TRAIL-mediated apoptosis, our findings underscore a potentially important role of Tat in protecting HIV-1-infected cells from TRAIL-mediated apoptosis.  相似文献   

8.
HIV-1 envelope (Env) triggers membrane fusion between the virus and the target cell. The cellular mechanism underlying this process is not well known. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is known to be important for the late steps of the HIV-1 infection cycle by promoting Gag localization to the plasma membrane during viral assembly, but it has not been implicated in early stages of HIV-1 membrane-related events. In this study, we show that binding of the initial HIV-1 Env-gp120 protein induces PIP(2) production in permissive lymphocytes through the activation of phosphatidylinositol-4-phosphate 5-kinase (PI4P5-K) Ialpha. Overexpression of wild-type PI4P5-K Ialpha increased HIV-1 Env-mediated PIP(2) production and enhanced viral replication in primary lymphocytes and CEM T cells, whereas PIP(2) production and HIV-1 infection were both severely reduced in cells overexpressing the kinase-dead mutant D227A (D/A)-PI4P5-K Ialpha. Similar results were obtained with replicative and single-cycle HIV-1 particles. HIV-1 infection was also inhibited by knockdown of endogenous expression of PI4P5-K Ialpha. These data indicate that PI4P5-K Ialpha-mediated PIP(2) production is crucial for HIV-1 entry and the early steps of infection in permissive lymphocytes.  相似文献   

9.
Despite multiple, high-risk sexual exposures, some individuals remain uninfected with human immunodeficiency virus type 1 (HIV-1). CD4+ lymphocytes from these individuals are less susceptible to infection in vitro with some strains of HIV-1, suggesting that the phenotype of the virus may influence its ability to interact with certain CD4+ cells. In the present study, we examined the susceptibility of CD4+ T lymphocytes and macrophages from two exposed uninfected individuals (EU2 and EU3) to infection with a panel of biologically cloned isolates of HIV-1 having either a non-syncytium-inducing (NSI) or a syncytium-inducing (SI) phenotype. Our results indicate that CD4+ T lymphocytes from EU2 and EU3 are resistant to infection with NSI isolates of HIV-1 but are susceptible to infection with primary SI isolates. In addition, we found that macrophages from EU2 and EU3 are resistant to infection with both NSI and SI isolates. The latter finding was confirmed by using several uncloned NSI and SI isolates obtained from patients during acute HIV-1 infection. In further experiments, env clones encoding glycoproteins characteristic of NSI or SI viruses were used in single-cycle infectivity assays to evaluate infection of CD4+ lymphocytes and macrophages from EU2 and EU3. Consistent with our previous results, we found that macrophages from these individuals are resistant to infection with NSI and SI env-pseudotyped viruses, while CD4+ T lymphocytes are resistant to NSI, but not SI, pseudotyped viruses. Overall, our results demonstrate that CD4+ cells from two exposed uninfected individuals resist infection in vitro with primary, macrophage-tropic, NSI isolates of HIV-1, which is the predominant viral phenotype found following HIV-1 transmission. Furthermore, infection with NSI isolates was blocked in both CD4+ T lymphocytes and macrophages from these individuals, suggesting that there may be a common mechanism for resistance in both cell types.  相似文献   

10.
T lymphocytes expressing the CD8 surface antigen block HIV replication in CD4+ peripheral blood cells from HIV-infected individuals. We report here that CD4+ cells from HIV seronegative donors, when infected in vitro with HIV, also do not replicate virus when cocultured with CD8+ T cells from HIV-infected individuals. CD8+ cells from HIV-uninfected donors did not show this effect on virus replication. HLA-restriction of the antiviral response was not observed, and virus-containing cells were not eliminated from culture. The antiviral activity was broadly cross-reactive, as CD8+ cells from individuals infected only with HIV-1 suppressed the replication of diverse strains of HIV-1 and HIV-2, as well as the simian immunodeficiency virus. This ability of CD8+ cells to control HIV replication could play an important role in the maintenance of an asymptomatic state in HIV-infected individuals.  相似文献   

11.
12.
During human immunodeficiency virus type 1 (HIV-1) infection, there is a strong positive correlation between CCL2 levels and HIV viral load. To determine whether CCL2 alters HIV-1 infection of resting CD4(+) T cells, we infected purified resting CD4(+) T cells after incubation with CCL2. We show that CCL2 up-regulates CXCR4 on resting CD4(+) T cells in a CCR2-dependent mechanism, and that this augmentation of CXCR4 expression by CCL2 increases the ability of these cells to be chemoattracted to CXCR4 using gp120 and renders them more permissive to X4-tropic HIV-1 infection. Thus, CCL2 has the capacity to render a large population of lymphocytes more susceptible to HIV-1 late in the course of infection.  相似文献   

13.
The relationship of T cell activation to HIV entry and generation of viral DNA intermediates was studied in freshly isolated CD4+ T lymphocytes. Unstimulated cells exposed to infectious virus for up to 48 h did not synthesize any detectable unintegrated HIV DNA duplex forms or integrated genomic provirus. However, activation of these cells with either PHA or OKT3 (anti-CD3) mAb before viral exposure resulted in the generation of unintegrated HIV DNA after 6 h and integrated copies after 24 h. Cell-to-cell fusion studies showed significantly attenuated fusion between freshly isolated resting T cells and T cells constitutively expressing high levels of HIV envelope glycoprotein (HXB/gpt) compared with T cells first stimulated with either PHA or OKT3 mAb. The baseline fusion observed with resting T cells is believed to be a consequence of allogeneic stimulation by the HXB/gpt cell line. These results provide evidence that HIV entry and HIV envelope-dependent cell-to-cell fusion require T cell activation.  相似文献   

14.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

15.
HIV-1-specific IgA has been described in the genital tract and plasma of HIV-1 highly exposed, persistently seronegative (HEPS) individuals, and IgA from these sites has been shown to neutralize HIV-1. This study examines the ability of IgA isolated from HEPS individuals to inhibit transcytosis across a tight epithelial cell layer. A Transwell system was established to model HIV-1 infection across the human mucosal epithelium. The apical-basolateral transcytosis of primary HIV-1 isolates across this mucosal model was examined in the presence and the absence of IgA isolated from the genital tract, saliva, and plasma of HEPS individuals enrolled in both a sex worker cohort in Nairobi, Kenya, and a discordant couple cohort in Italy. In the absence of IgA, HIV-1 primary isolates were actively transported across the epithelial membrane and were released on the opposite side of the barrier. These transcytosed HIV-1 particles retained their ability to infect human mononuclear cells. However, IgA purified from the mucosa and plasma of HEPS individuals was able to inhibit HIV-1 transcytosis. Inhibition was seen in three of six cervicovaginal fluid samples, five of 10 saliva samples, and three of six plasma samples against at least one of the two primary HIV-1 isolates tested. IgA from low risk, healthy control subjects had no inhibitory effect on HIV-1 transcytosis. The ability of mucosal and plasma IgA to inhibit HIV-1 transcytosis across the mucosal epithelium may represent an important mechanism for protection against the sexual acquisition of HIV-1 infection in HEPS individuals.  相似文献   

16.
The role of HIV-1-specific CD4+ T-cell responses in controlling HIV-1 infection remains unclear. Previous work has suggested that such cells are eliminated in the early stages of infection in most subjects, and thus cannot substantially contribute to host defense against HIV-1. Here, using flow cytometric detection of antigen-induced intracellular cytokines, we show that significant frequencies of gag specific, T-helper-1 CD4+ memory T cells are detectable in most subjects with active/progressive HIV-1 infection (median frequency, 0.12% of memory subset; range, 0-0.66%). Median frequencies of these cells were considerably higher in nonprogressive HIV-1 disease (0.40%), but there was substantial overlap between the two groups (range of nonprogressors, 0.10-1.7%). Continuous HIV-1 suppression with anti-retroviral therapy was associated with a time-dependent reduction in median frequencies of gag-specific CD4+ memory T cells: 0.08% in subjects treated for 4-24 weeks, and 0.03% in subjects treated for 47-112 weeks. Thus, functional HIV-1-specific CD4+ T cells are commonly available for support of anti-HIV-1 effector responses in active disease, but their decline with anti-retroviral therapy indicates that immunologic participation in long-term HIV-1 control will probably require effective vaccination strategies.  相似文献   

17.
The decrease of CD4+ cells in AIDS patients is widely documented, although the selective loss within different subsets of CD4+ cells and the mechanisms involved in this phenomenon are controversial. In the present report we have analyzed the proliferative response to Ag and mitogen of peripheral blood T lymphocytes from HIV-infected individuals, the phenotype profile of CD26+ and CD26- subset of cells and their infectivity by the HIV. The expression of CD26 Ag, either in CD4+ or CD8+ cells, was clearly diminished in all the patients tested. On the other hand, the expression of CD29 seems not to be affected, nevertheless T cells from these patients were unable to generate a proliferative response against soluble Ag. In 11 out of 13 patients, polymerase chain reaction studies demonstrated that the CD26- subset of CD4+ cells was the main reservoir for HIV-1 in infected individuals and HIV-1 virus preferentially infected in vitro CD4+/CD26- subpopulation. This capacity for preferential infectivity, together with the selective loss of cells expressing CD26 Ag, helps to explain the progressive impairment in the immune system of these patients and sheds new light on our understanding of the AIDS pathophysiology.  相似文献   

18.
Microbial translocation has been linked to systemic immune activation in HIV-1 disease, yet mechanisms by which microbes may contribute to HIV-associated intestinal pathogenesis are poorly understood. Importantly, our understanding of the impact of translocating commensal intestinal bacteria on mucosal-associated T cell responses in the context of ongoing viral replication that occurs early in HIV-1 infection is limited. We previously identified commensal Escherichia coli-reactive Th1 and Th17 cells in normal human intestinal lamina propria (LP). In this article, we established an ex vivo assay to investigate the interactions between Th cell subsets in primary human LP mononuclear cells (LPMCs), commensal E. coli, and CCR5-tropic HIV-1(Bal). Addition of heat-killed E. coli to HIV-1-exposed LPMCs resulted in increases in HIV-1 replication, CD4 T cell activation and infection, and IL-17 and IFN-γ production. Conversely, purified LPS derived from commensal E. coli did not enhance CD4 T cell infection. E. coli exposure induced greater proliferation of LPMC Th17 than Th1 cells. Th17 cells were more permissive to infection than Th1 cells in HIV-1-exposed LPMC cultures, and Th17 cell infection frequencies significantly increased in the presence of E. coli. The E. coli-associated enhancement of infection was dependent on the presence of CD11c(+) LP dendritic cells and, in part, on MHC class II-restricted Ag presentation. These results highlight a potential role for translocating microbes in impacting mucosal HIV-1 pathogenesis during early infection by increasing HIV-1 replication and infection of intestinal Th1 and Th17 cells.  相似文献   

19.
20.
Different features have been associated with low susceptibility to HIV type 1 (HIV-1) infection in exposed seronegative individuals. These include genetic make-up such as homozygosity for the CCR5-Delta32 allele and the presence of HIV-specific CTLs. We studied immune activation and immune responsiveness in relation to HIV-1 susceptibility in 42 high-risk seronegative (HRSN) participants of the Amsterdam Cohort Studies and 54 men from the same cohort who were seronegative at the moment of analysis but later became HIV seropositive. HRSN had higher naive (CD45RO CD27) CD4 and CD8 T cell numbers and lower percentages of activated (HLADR CD38, CD70) CD4 and proliferating (Ki67) CD4 and CD8 T cells, irrespective of previous episodes of sexually transmittable infections. Furthermore, whole blood cultures from HRSN showed lower lymphoproliferative responses than healthy laboratory controls. These data suggest that low levels of immune activation and low T cell responsiveness may contribute to low HIV susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号