首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

High-density oligonucleotide arrays have become a valuable tool for high-throughput gene expression profiling. Increasing the array information density and improving the analysis algorithms are two important computational research topics.

Results

A new algorithm, Match-Only Integral Distribution (MOID), was developed to analyze high-density oligonucleotide arrays. Using known data from both spiking experiments and no-change experiments performed with Affymetrix GeneChip® arrays, MOID and the Affymetrix algorithm implemented in Microarray Suite 4.0 (MAS4) were compared. While MOID gave similar performance to MAS4 in the spiking experiments, better performance was observed in the no-change experiments. MOID also provides a set of alternative statistical analysis tools to MAS4. There are two main features that distinguish MOID from MAS4. First, MOID uses continuous P values for the likelihood of gene presence, while MAS4 resorts to discrete absolute calls. Secondly, MOID uses heuristic confidence intervals for both gene expression levels and fold change values, while MAS4 categorizes the significance of gene expression level changes into discrete fold change calls.

Conclusions

The results show that by using MOID, Affymetrix GeneChip® arrays may need as little as ten probes per gene without compromising analysis accuracy.  相似文献   

3.
Pseudo-exons are intronic sequences that are flanked by apparent consensus splice sites but that are not observed in spliced mRNAs. Pseudo-exons are often difficult to activate by mutation and have typically been viewed as a conceptual challenge to our understanding of how the spliceosome discriminates between authentic and cryptic splice sites. We have analyzed an apparent pseudo-exon located downstream of mutually exclusive exons 2 and 3 of the rat alpha-tropomyosin (TM) gene. The TM pseudo-exon is conserved among mammals and has a conserved profile of predicted splicing enhancers and silencers that is more typical of a genuine exon than a pseudo-exon. Splicing of the pseudo-exon is fully activated for splicing to exon 3 by a number of simple mutations. Splicing of the pseudo-exon to exon 3 is predicted to lead to nonsense-mediated decay (NMD). In contrast, when "prespliced" to exon 2 it follows a "zero length exon" splicing pathway in which a newly generated 5' splice site at the junction with exon 2 is spliced to exon 4. We propose that a subset of apparent pseudo-exons, as exemplified here, are actually authentic alternative exons whose inclusion leads to NMD.  相似文献   

4.

Background

Current methods of analyzing Affymetrix GeneChip® microarray data require the estimation of probe set expression summaries, followed by application of statistical tests to determine which genes are differentially expressed. The S-Score algorithm described by Zhang and colleagues is an alternative method that allows tests of hypotheses directly from probe level data. It is based on an error model in which the detected signal is proportional to the probe pair signal for highly expressed genes, but approaches a background level (rather than 0) for genes with low levels of expression. This model is used to calculate relative change in probe pair intensities that converts probe signals into multiple measurements with equalized errors, which are summed over a probe set to form the S-Score. Assuming no expression differences between chips, the S-Score follows a standard normal distribution, allowing direct tests of hypotheses to be made. Using spike-in and dilution datasets, we validated the S-Score method against comparisons of gene expression utilizing the more recently developed methods RMA, dChip, and MAS5.

Results

The S-score showed excellent sensitivity and specificity in detecting low-level gene expression changes. Rank ordering of S-Score values more accurately reflected known fold-change values compared to other algorithms.

Conclusion

The S-score method, utilizing probe level data directly, offers significant advantages over comparisons using only probe set expression summaries.  相似文献   

5.
6.
7.

Background

The three consensus elements at the 3' end of human introns - the branch point sequence, the polypyrimidine tract, and the 3' splice site AG dinucleotide - are usually closely spaced within the final 40 nucleotides of the intron. However, the branch point sequence and polypyrimidine tract of a few known alternatively spliced exons lie up to 400 nucleotides upstream of the 3' splice site. The extended regions between the distant branch points (dBPs) and their 3' splice site are marked by the absence of other AG dinucleotides. In many cases alternative splicing regulatory elements are located within this region.

Results

We have applied a simple algorithm, based on AG dinucleotide exclusion zones (AGEZ), to a large data set of verified human exons. We found a substantial number of exons with large AGEZs, which represent candidate dBP exons. We verified the importance of the predicted dBPs for splicing of some of these exons. This group of exons exhibits a higher than average prevalence of observed alternative splicing, and many of the exons are in genes with some human disease association.

Conclusion

The group of identified probable dBP exons are interesting first because they are likely to be alternatively spliced. Second, they are expected to be vulnerable to mutations within the entire extended AGEZ. Disruption of splicing of such exons, for example by mutations that lead to insertion of a new AG dinucleotide between the dBP and 3' splice site, could be readily understood even though the causative mutation might be remote from the conventional locations of splice site sequences.  相似文献   

8.
9.
10.
11.
12.
Exon creation and establishment in human genes   总被引:1,自引:0,他引:1  
Corvelo A  Eyras E 《Genome biology》2008,9(9):R141-17

Background

A large proportion of species-specific exons are alternatively spliced. In primates, Alu elements play a crucial role in the process of exon creation but many new exons have appeared through other mechanisms. Despite many recent studies, it is still unclear which are the splicing regulatory requirements for de novo exonization and how splicing regulation changes throughout an exon's lifespan.

Results

Using comparative genomics, we have defined sets of exons with different evolutionary ages. Younger exons have weaker splice-sites and lower absolute values for the relative abundance of putative splicing regulators between exonic and adjacent intronic regions, indicating a less consolidated splicing regulation. This relative abundance is shown to increase with exon age, leading to higher exon inclusion. We show that this local difference in the density of regulators might be of biological significance, as it outperforms other measures in real exon versus pseudo-exon classification. We apply this new measure to the specific case of the exonization of anti-sense Alu elements and show that they are characterized by a general lack of exonic splicing silencers.

Conclusions

Our results suggest that specific sequence environments are required for exonization and that these can change with time. We propose a model of exon creation and establishment in human genes, in which splicing decisions depend on the relative local abundance of regulatory motifs. Using this model, we provide further explanation as to why Alu elements serve as a major substrate for exon creation in primates. Finally, we discuss the benefits of integrating such information in gene prediction.  相似文献   

13.
14.
15.
16.
17.
18.
As well as generating protein isoform diversity, in some cases alternative splicing generates RNAs that harbor premature termination codons and that are subject to nonsense-mediated decay (NMD). We previously identified an apparent pseudo-exon in the rat α-tropomyosin (Tpm1) gene as a probable genuine alternatively spliced exon that causes NMD when spliced into Tpm1 RNA. Here, we report the analysis of cis-acting splicing regulatory elements within this “nonsense exon.” Guided by the data set of predicted splicing enhancer and silencer elements compiled by Zhang and Chasin, we made a series of mutations through the nonsense exon and found that like authentic exons it is densely packed with enhancer and silencer elements. Strikingly, 11 of 13 tested mutations behaved as predicted computationally. In particular, we found that a G-rich silencer at the 5′ end, which is crucial for skipping of the nonsense exon, functions by binding hnRNP-H and F.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号