首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Phosphatidic acid (PA), an important signalling and metabolic phospholipid, is predominantly localized in the subapical plasma membrane (PM) of growing pollen tubes. PA can be produced from structural phospholipids by phospholipase D (PLD), but the isoforms responsible for production of PM PA were not identified yet and their functional roles remain unknown. Following genome‐wide bioinformatic analysis of the PLD family in tobacco, we focused on the pollen‐overrepresented PLDδ class. Combining live‐cell imaging, gene overexpression, lipid‐binding and structural bioinformatics, we characterized five NtPLDδ isoforms. Distinct PLDδ isoforms preferentially localize to the cytoplasm or subapical PM. Using fluorescence recovery after photobleaching, domain deletion and swapping analyses we show that membrane‐bound PLDδs are tightly bound to PM, primarily via the central catalytic domain. Overexpression analyses suggested isoform PLDδ3 as the most important member of the PLDδ subfamily active in pollen tubes. Moreover, only PLDδ3 shows significant constitutive PLD activity in vivo and, in turn, PA promotes binding of PLDδ3 to the PM. This forms a positive feedback loop leading to PA accumulation and the formation of massive PM invaginations. Tightly controlled production of PA generated by PLDδ3 at the PM is important for maintaining the balance between various membrane trafficking processes that are crucial for plant cell tip growth.  相似文献   

3.
Myocardial phospholipase D (PLD) is located in different subcellular membranes, including sarcolemma (SL) and sarcoplasmic reticulum (SR). In this study, the kinetics of PLD-dependent hydrolytic and transphosphatidylation activities were examined in SL and SR fractions isolated from rat heart by measuring the formation of phosphatidic acid and phosphatidylethanol, respectively. The results showed that, compared to SR PLD, SL PLD had a higher Vmax, i.e. 373 vs. 70 nmol/mg protein/h for the hydrolytic activity and 415 vs. 60 nmol/mg protein/h for the transphosphatidylation activity. In comparison with the SR enzyme, SL PLD had a lower Km value for the hydrolytic activity (0.46 vs. 0.65 mM), but a higher Km for the transphosphatidylation activity (225 vs. 179 mM). These distinctive kinetic parameters suggest that SL PLD and SR PLD may be isoforms of the enzyme and/or have different membrane domain. Therefore, SL- and SR-localized PLD activities may be under independent control mechanism(s) and play distinct roles in normal conditions and pathological processes.  相似文献   

4.
Phospholipase D (PLD) produces phosphatidic acid (PA), an established intracellular signalling lipid that has been also implicated in vesicular trafficking, and as such, PLD could play multiple roles during phagocytosis. Using an RNA interference strategy, we show that endogenous PLD1 and PLD2 are necessary for efficient phagocytosis in murine macrophages, in line with results obtained with wild-type constructs and catalytically inactive PLD mutants which, respectively, enhance and inhibit phagocytosis. Furthermore, we found that PA is transiently produced at sites of phagosome formation. Macrophage PLD1 and PLD2 differ in their subcellular distributions. PLD1 is associated with cytoplasmic vesicles, identified as a late endosomal/lysosomal compartment, whereas PLD2 localizes at the plasma membrane. In living cells undergoing phagocytosis, PLD1 vesicles are recruited to nascent and internalized phagosomes, whereas PLD2 is only observed on nascent phagosomes. These results provide evidence that both PLD isoforms are required for phagosome formation, but only PLD1 seems to be implicated in later stages of phagocytosis occurring after phagosomal internalization.  相似文献   

5.
The role of phospholipase D (PLD) in cytoskeletal reorganization, ERK activation, and migration is well established. Both isoforms of PLD (PLD1 and PLD2) can independently activate stress fiber formation and increase ERK phosphorylation. However, the isoform's specificity, upstream activators, and downstream targets of PLD that coordinate this process are less well understood. This study explores the role of α(1) -adrenergic receptor stimulation and its effect on PLD activity. We demonstrate that PLD1 activators, RhoA, and PKCα are critical for stress fiber formation and ERK activation, and enhance the production of phosphatidic acid (PA) upon phenylephrine addition. Ectopic expression of dominant negative PLD1 and not PLD2 blocks ERK activation, inhibits stress fiber formation, and reduces cell motility in CCL39 fibroblasts. Furthermore, we demonstrate the mechanism for PLD1 activation of ERK involves Ras. This work indicates that PLD1 plays a novel role mediating growth factor and cell motility events in α(1) -adrenergic receptor-activated cells.  相似文献   

6.
It is now well documented that active neurogenesis does exist throughout the life span in the brain of various species including human. Two discrete brain regions contain progenitor cells that are capable of differentiating into neurons or glia, the subventricular zone and the dentate gyrus of the hippocampal formation. Recent studies have shown that neurogenesis can be modulated by a variety of factors, including stress and neurohormones, growth factors, neurotransmitters, drugs of abuse, and also strokes and traumatic brain injuries. In particular, the hippocampal neurogenesis may play a role in neuroadaptation associated with pathologies, such as cognitive disorders and depression. The increased neurogenesis at sites of injury may represent an attempt by the central nervous system to regenerate after damage. We herein review the most significant data on hippocampal neurogenesis in brain under various pathological conditions, with a special attention to mood disorders including depression and addiction. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

7.
The rapid production of phosphatidic acid following receptor stimulation has been demonstrated in a wide range of mammalian cells. Virtually every cell uses phosphatidylcholine as substrate to produce phosphatidic acid in a controlled reaction catalyzed by specific PLD isoforms. Considerable effort has been directed at studying the regulation of PLD activities and subsequent work has characterized a family of proteins including PLD1 and PLD2. Whereas both PLD enzymes are dependent on phosphatidylinositol 4, 5-bisphosphate for activity only the PLD1 isoform was strongly stimulated by the small GTPases ARF and RhoA and by protein kinase Calpha as well. A role for tyrosine kinase activities in the membrane recruitment of small GTPases, in the synthesis of phosphatidylinositol 4,5-bisphosphate and tyrosine phosphorylation of PLD1 and PLD2 has been uncovered. However, it still not clear exactly how tyrosine phosphorylation of proteins contributes to PLD activation in cells. Here we review the data linking tyrosine phosphorylation of proteins to the activation of PLD and describe recent finding on the sites and possible mechanisms of action of tyrosine kinases in receptor-mediated PLD activation. Finally, a model illustrating the potential complex interplay linking these signaling events with the activation of PLD is presented.  相似文献   

8.
9.
Mammalian phospholipase D (PLD) mostly hydrolyzes phosphatidylcholine producing phosphatidic acid. PLD activity was previously detected in different osteoblastic cell models, and was increased by several growth factors involved in bone homeostasis. To confirm possible actions of PLD isoforms during mineralization process, we analyzed their effects in osteoblastic cell models and during bone formation. PLD1 expression, along with PLD activity, increased during differentiation of primary osteoblasts and Saos-2 cells, and peaked at the onset of mineralization. Subsequently, both PLD1 expression and PLD activity decreased, suggesting that PLD1 function is regulated during osteoblast maturation. In contrast, PLD2 expression was not significantly affected during differentiation of osteoblasts. Overexpression of PLD1 in Saos-2 cells improved their mineralization potential. PLD inhibitor Halopemide or PLD1-selective inhibitor, led to a decrease in mineralization in both cell types. On the contrary, the selective inhibitor of PLD2, did not affect the mineralization process. Moreover, primary osteoblasts isolated from PLD1 knockout (KO) mice were significantly less efficient in mineralization as compared with those isolated from wild type (WT) or PLD2 KO mice. In contrast, bone formation, as monitored by high-resolution microcomputed tomography analysis, was not impaired in PLD1 KO nor in PLD2 KO mice, indicating that the lack of PLD1 or that of PLD2 did not affect the bone structure in adult mice. Taken together, our findings indicate that PLD activity, especially which of PLD1 isoform, may enhance the mineralization process in osteoblastic cells. Nonetheless, the lack of PLD1 or PLD2 do not seem to significantly affect bone formation in adult mice.  相似文献   

10.
The rapid production of phosphatidic acid following receptor stimulation has been demonstrated in a wide range of mammalian cells. Virtually every cell uses phosphatidylcholine as substrate to produce phosphatidic acid in a controlled reaction catalyzed by specific PLD isoforms. Considerable effort has been directed at studying the regulation of PLD activities and subsequent work has characterized a family of proteins including PLD1 and PLD2. Whereas both PLD enzymes are dependent on phosphatidylinositol 4,5-bisphosphate for activity only the PLD1 isoform was strongly stimulated by the small GTPases ARF and RhoA and by protein kinase Cα as well. A role for tyrosine kinase activities in the membrane recruitment of small GTPases, in the synthesis of phosphatidylinositol 4,5-bisphosphate and tyrosine phosphorylation of PLD1 and PLD2 has been uncovered. However, it still not clear exactly how tyrosine phosphorylation of proteins contributes to PLD activation in cells. Here we review the data linking tyrosine phosphorylation of proteins to the activation of PLD and describe recent finding on the sites and possible mechanisms of action of tyrosine kinases in receptor-mediated PLD activation. Finally, a model illustrating the potential complex interplay linking these signaling events with the activation of PLD is presented.  相似文献   

11.
Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2, and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.  相似文献   

12.
Phospholipase D (PLD) is a phosphatidyl choline (PC)-hydrolyzing enzyme that generates phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling. Through interactions with signaling molecules, both PLD and PA can mediate a variety of cellular functions, such as, growth/proliferation, vesicle trafficking, cytoskeleton modulation, development, and morphogenesis. Therefore, systemic approaches for investigating PLD networks including interrelationship between PLD and PA and theirs binding partners, such as proteins and lipids, can enhance fundamental knowledge of roles of PLD and PA in diverse biological processes. In this review, we summarize previously reported protein-protein and protein-lipid interactions of PLD and PA and their binding partners. In addition, we describe the functional roles played by PLD and PA in these interactions, and provide PLD network that summarizes these interactions. The PLD network suggests that PLD and PA could act as a decision maker and/or as a coordinator of signal dynamics. This viewpoint provides a turning point for understanding the roles of PLD-PA as a dynamic signaling hub.  相似文献   

13.
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.  相似文献   

14.
15.
Numerous studies show that PLD is activated in cells by calcium and by protein kinase C (PKC). We found that human PLD1 and PLD2 expressed in Sf9 cells can be activated by calcium-mobilizing agonists and by co-expression with PKCalpha. The calcium-mobilizing agonists A23187 and CryIC toxin triggered large increases in phosphatidylethanol (PtdEth) production in Sf9 cells over-expressing PLD1 and PLD2, but not in vector controls. PLD activation by these agonists was largely dependent on extracellular calcium. Membrane assays demonstrated significant PLD1 and PLD2 activity in the absence of divalent cations, which could be enhanced by low levels of calcium either in the presence or absence of magnesium. PLD1 but not PLD2 activity was slightly enhanced by magnesium. Treatment of Sf9 cells expressing PLD1 and PLD2 with PMA resulted in little PtdEth production. However, a significant and comparable formation of PtdEth occurred when PLD1 or PLD2 were co-expressed with PKCalpha, but not PKCdelta, and was further augmented by PMA. In contrast to PLD1, co-expressing PLD2 with PKCalpha or PKCdelta further enhanced A23187-induced PtdEth production. Immunoprecipitation experiments demonstrated that PLD1 and PLD2 associated with the PKC isoforms in Sf9 cells. Furthermore, in membrane reconstitution assays, both PLD1 and PLD2 could be stimulated by calmodulin and PKCalpha-enriched cytosol. The results indicate that PLD2 as well as PLD1 is subject to agonist-induced activation in intact cells and can be regulated by calcium and PKC.  相似文献   

16.
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.  相似文献   

17.
Phosphatidylinositol 4-phosphate 5-kinases [PtdIns4P5Ks] synthesise the majority of cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and phospholipase D1 (PLD1) synthesises large amounts of phosphatidic acid (PtdOH). The activities of PtdIns4P5Ks and PLDs are thought to be coupled during cell signalling in order to support large simultaneous increases in both PtdIns(4,5)P(2) and PtdOH, since PtdOH activates PtdIns4P5Ks and PLD1 requires PtdIns(4,5)P(2) as a cofactor. However, little is known about the control of such a system. Membrane recruitment of ADP-ribosylation factors (Arfs) activates both PtdIns4P5Ks and PLDs, but it is not known if each enzyme is controlled in series by different Arfs or in parallel by a single form. We show through pull-down and vesicle sedimentation interaction assays that PtdIns4P5K activation may be facilitated by Arf-enhanced membrane association. However PtdIns4P5Ks discriminate poorly between near homogeneously myristoylated Arf1 and Arf6 although examples of all three known active isoforms (mouse alpha>beta, gamma) respond to these G-proteins. Conversely PLD1 genuinely prefers Arf1 and so the two lipid metabolising enzymes are differentially controlled. We propose that isoform selective Arf/PLD interaction and not Arf/PtdIns4P5K will be the critical trigger in the formation of distinct, optimal triples of Arf/PLDs/PtdIns4P5Ks and be the principle regulator of any coupled increases in the signalling lipids PtdIns(4,5)P(2) and PtdOH.  相似文献   

18.
Astrocytes represent at least 50% of the volume of the human brain. Besides their roles in various supportive functions, astrocytes are involved in the regulation of stem cell proliferation, synaptic plasticity and neuroprotection. Astrocytes also influence neuronal physiology by responding to neurotransmitters and neuropeptides and by releasing regulatory factors termed gliotransmitters. In particular, astrocytes express the PACAP-specific receptor PAC1-R and the PACAP/VIP mutual receptors VPAC1-R and VPAC2-R during development and/or in the adult. There is now clear evidence that PACAP and VIP modulate a number of astrocyte activities such as proliferation, plasticity, glycogen production, and biosynthesis of neurotrophic factors and gliotransmitters.  相似文献   

19.
Lysophosphatidate (LPA) stimulates cell migration and division through a family of G-protein-coupled receptors. Lipid phosphate phosphatase-1 (LPP1) regulates the degradation of extracellular LPA as well as the intracellular accumulation of lipid phosphates. Here we show that increasing the catalytic activity of LPP1 decreased the pertussis toxin-sensitive stimulation of fibroblast migration by LPA and an LPA-receptor agonist that could not be dephosphorylated. Conversely, knockdown of endogenous LPP1 activity increased LPA-induced migration. However, LPP1 did not affect PDGF- or endothelin-induced migration of fibroblasts in Transwell chamber and "wound healing" assays. Thus, in addition to degrading exogenous LPA, LPP1 controls signaling downstream of LPA receptors. Consistent with this conclusion, LPP1 expression decreased phospholipase D (PLD) stimulation by LPA and PDGF, and phosphatidate accumulation. This LPP1 effect was upstream of PLD activation in addition to the possible metabolism of phosphatidate to diacylglycerol. PLD(2) activation was necessary for LPA-, but not PDGF-induced migration. Increased LPP1 expression also decreased the LPA-, but not the PDGF-induced activation of important proteins involved in fibroblast migration. These included decreased LPA-induced activation of ERK and Rho, and the basal activities of Rac and Cdc42. However, ERK and Rho activation were not downstream targets of LPA-induced PLD(2) activity. We conclude that the intracellular actions of LPP1 play important functions in regulating LPA-induced fibroblast migration through PLD2. LPP1 also controls PDGF-induced phosphatidate formation. These results shed new light on the roles of LPP1 in controlling wound healing and the growth and metastasis of tumors.  相似文献   

20.
Phospholipase D (PLD) is a ubiquitous enzyme that can be activated by extracellular adenosine 5'-triphosphate (ATP) or phorbol 12-myristate 13-acetate (PMA) in B-lymphocytes from subjects with chronic lymphocytic leukaemia (CLL). In this study, ATP- but not PMA-induced PLD stimulation in CLL B-lymphocytes was abolished in the presence of an anti-P2X(7) receptor monoclonal antibody, as well as in B-lymphocytes from CLL subjects homozygous for the Glu(496) to Ala loss-of-function P2X(7) polymorphism. Rottlerin, an inhibitor of novel protein kinase C (PKC) isoforms, but not GF 109203X, an inhibitor of conventional PKC isoforms, impaired the ATP-stimulated PLD activity in CLL B-lymphocytes. In contrast, both inhibitors impaired PLD activity stimulated by PMA, a known mediator of PKC activation. The inhibition of P2X(7)-stimulated PLD activity by rottlerin was attributed to a target downstream of P2X(7) activation, as the ATP-mediated (86)Rb(+) efflux from CLL B-lymphocytes was not altered in the presence of rottlerin. Our results indicate a possible role for novel PKC isoforms in the regulation of P2X(7)-mediated PLD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号